# NAVODAYA VIDYALAYA SAMITI: HYDERABAD REGION

## Term I Examination (2025-26)

CLASS:XII SUBJECT: MATHEMATICS

Max Time: 3 hrs. Max Marks: 80

## SET-I

### **General Instructions:**

- i. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- ii. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- iii. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- iv. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- v. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- vi. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
- vii. Use of calculators is not permitted. You may ask for logarithmic tables if required.

| SECTION A |                                                                                                    |       |
|-----------|----------------------------------------------------------------------------------------------------|-------|
| Select    | the most appropriate option out of the four choices given for each of the question                 |       |
| Q No      | Question                                                                                           | Marks |
| 1         | If $A=\{1,2,3\}$ and R is a relation on A given by $R=\{(1,1),(2,2),(3,3),(2,3)\}$ , then which of | 1     |
|           | the following statement is true about the relation R?                                              |       |
|           | (A) R is reflexive, symmetric but not transitive                                                   |       |
|           | (B) R is reflexive, not symmetric but transitive                                                   |       |
|           | (C) R is reflexive, not symmetric and not transitive                                               |       |
|           | (D) R is an equivalence relation                                                                   |       |
|           |                                                                                                    |       |
| 2         | Let $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = 2x+4$ . Then f is:                           | 1     |
|           | (A) one-one but not onto (B) onto but not one-one                                                  |       |
|           | (C) neither one-one nor onto (D) both one –one and onto                                            |       |
|           |                                                                                                    |       |
| 3         | If A is a non zero square matrix, then $A-A^T$ is always a:                                        | 1     |
|           | (A)symmetric matrix (B) skew symmetric matrix                                                      |       |
|           | (C) zero matrix (D) diagonal matrix                                                                |       |
| 4         | If A is a square matrix of order 3 such that $ A  = 2$ , then $ 3adjA $ is equal to:               | 1     |
|           | (A) 6 (B) 36 (C) 54 (D) 108                                                                        |       |
| 5         | The value of $sin^2 \left(cos^{-1}\frac{4}{5}\right)$ is equal to :                                | 1     |
|           | (A) $\frac{3}{5}$ (B) $\frac{16}{25}$ (C) $\frac{9}{25}$ (D) $\frac{1}{5}$                         |       |
|           |                                                                                                    |       |

| 6   | The matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ is a/an:                                                                             | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                                                                                       |   |
| 7   | (A) scalar matrix (B) identity matrix (C) null matrix (D) symmetric matrix  The total number of possible matrices of order 3 × 2 in which each entry is either 1 or 2 | 1 |
| ,   | is equal to:                                                                                                                                                          | 1 |
|     | (A) 8 (B) 32 (C) 12 (D) 64                                                                                                                                            |   |
|     |                                                                                                                                                                       |   |
| 8   | If A and B are invertible matrices of the same order ,then which of the following is not                                                                              | 1 |
|     | correct?                                                                                                                                                              |   |
|     | (A) $(AB)^{-1} = B^{-1}A^{-1}$ (B) $(AB)^T = B^TA^T$                                                                                                                  |   |
|     | (C) $(A + B)^{-1} = B^{-1} + A^{-1}$ (D) $adjA =  A A^{-1}$                                                                                                           |   |
| 9   | $\Gamma 4 + \gamma = \gamma - 1$                                                                                                                                      | 1 |
|     | If the matrix $A = \begin{bmatrix} 4+x & x-1 \\ -2 & 3 \end{bmatrix}$ is singular                                                                                     | • |
|     | (A) $0$ (B) $1$ (C) $-2$ (D) $-4$                                                                                                                                     |   |
|     |                                                                                                                                                                       |   |
| 10  | Which of the following statement is true about the function $f(x) =  x - 2 $ ?                                                                                        | 1 |
|     | (A) f(x) is differentiable but not continuous at x=2                                                                                                                  |   |
|     | <ul> <li>(B) f(x) is differentiable and continuous at x=2</li> <li>(C) f(x) is continuous but not differentiable at x= 2</li> </ul>                                   |   |
|     | (D) $f(x)$ is neither differentiable nor continuous at $x=2$                                                                                                          |   |
| 11  | If $y = a(1 - \cos\theta)$ and $x = a(\theta - \sin\theta)$ , then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$ is:                                                    | 1 |
|     |                                                                                                                                                                       |   |
|     | (A) 1 (B) $\sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) $-\frac{1}{\sqrt{3}}$                                                                                               |   |
|     |                                                                                                                                                                       |   |
| 12  | The maximum value of the function $\sin x + \cos x$ is equal to:                                                                                                      | 1 |
|     | (A) 2 (B) $\sqrt{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) 1                                                                                                                   |   |
|     |                                                                                                                                                                       |   |
| 13  | The function $f(x) = x^2 - 4x + 6$ is increasing in the interval                                                                                                      | 1 |
|     | (A) (0.2) (D) ( as 2] (C) (1.2] (D) (2 as)                                                                                                                            |   |
|     | (A) $(0,2)$ (B) $(-\infty, 2]$ (C) $[1,2]$ (D) $[2,\infty)$                                                                                                           |   |
| 14  | $\frac{\pi}{G}$ since                                                                                                                                                 | 1 |
|     | $\int_0^{\frac{\pi}{2}} \cos x \cdot e^{\sin x} dx =$                                                                                                                 | _ |
| 1.5 | (A) 0 (B) e (C) $e - 1$ (D) $1 - e$                                                                                                                                   | 1 |
| 15  | The integrating factor of the differential equation $(x \log x) \frac{dy}{dx} + y = 2\log x$ is                                                                       | 1 |
|     | (A) $e^x$ (B) x (C) $\log(\log x)$ (D) $\log x$                                                                                                                       |   |
| 16  | (A) $e^x$ (B) x (C) $\log(\log x)$ (D) $\log x$<br>The value of $\int_0^{\frac{\pi}{2}} \frac{\sin^5 x}{\sin^5 x + \cos^5 x} dx =$                                    | 1 |
|     | The value of $\int_0^2 \frac{1}{\sin^5 x + \cos^5 x} dx = \int_0^2 \frac{1}{\sin^5 x + \cos^5 x} dx$                                                                  |   |
|     | $\pi$ $\pi$ $\pi$ $\pi$ $\pi$ $\pi$                                                                                                                                   |   |
|     | (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\pi$ (D) 0                                                                                                               |   |

| 17       | The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^5 cos x - sin x) dx$ is equal to:                                                                                                                                                                                                                                              | 1        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | (A) $\pi$ (B) $\frac{\pi}{2}$ (C) 1 (D) 0                                                                                                                                                                                                                                                                                                          |          |
| 18       | The degree of the differential equation $\left(\frac{d^3y}{dx^3}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^4 + \left(\frac{dy}{dx}\right)^5 + \sin^{-1}x = 0$ is  (A) 3 (B) 4 (C) 5 (D) not defined                                                                                                                                                | 1        |
|          | Question numbers 19 and 20 are Assertion-reason Questions: there are two statements- Assertion (A) and reason (R) in each question. Answer these questions by selecting the most suitable options given below:  A) Both A and R are true and R is the correct explanation of A  B) Both A and R are true and R is not the correct explanation of A |          |
|          | C) A is true but R is false D) A is false but R is true                                                                                                                                                                                                                                                                                            |          |
| 19       | <b>Assertion</b> (A): If A is a square matrix of order 3 such that $ A  = -2$ , then $ 2A  = -4$<br><b>Reason</b> (R): If A is a square matrix of order 'n' then $ kA  = k^n  A $ where k is any real number.                                                                                                                                      | 1        |
| 20       | <b>Assertion</b> (A): Set values of $cosec^{-1}\left(\frac{1}{2}\right)$ is an empty set                                                                                                                                                                                                                                                           | 1        |
|          | <b>Reason</b> ( <b>R</b> ): $cosec^{-1}x$ is defined for $x \in \mathbb{R} - (-1,1)$                                                                                                                                                                                                                                                               |          |
| 21       | SECTION-B                                                                                                                                                                                                                                                                                                                                          | 2        |
| 21       | Evaluate: $tan^{-1}\left[2sin\left(2cos^{-1}\frac{\sqrt{3}}{2}\right)\right]$                                                                                                                                                                                                                                                                      | 2        |
| 22       | Express in the simplest form: $tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)$                                                                                                                                                                                                                                                                        | 2        |
| 23       | Evaluate: $\int e^x \sin\left(x + \frac{\pi}{4}\right) dx$ OR  Evaluate: $\int \frac{e^{2x} - 1}{e^{2x} + 1} dx$                                                                                                                                                                                                                                   | 2        |
| 24       | (a) If the area of a circle increases at a constant rate, then prove that that the perimeter                                                                                                                                                                                                                                                       | 2        |
| <b>4</b> | varies inversely as the radius.                                                                                                                                                                                                                                                                                                                    | <i>2</i> |
|          | OR                                                                                                                                                                                                                                                                                                                                                 |          |
|          | (b) The volume of the cube increases at a constant rate. Prove that the rate of increase of its surface area varies inversely as the length of the side.                                                                                                                                                                                           |          |
| 25       | Evaluate : $\int tan^{-1}x \ dx$                                                                                                                                                                                                                                                                                                                   | 2        |

|    | SECTION-C                                                                                                                                                                                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 26 | (a) Evaluate: $\int \frac{2x}{(x^2+2)(x^2-3)} dx$                                                                                                                                                         | 3 |
|    | OR                                                                                                                                                                                                        |   |
|    | (b) Evaluate: $\int \frac{e^x}{\sqrt{5-4e^x-e^{2x}}} dx$                                                                                                                                                  |   |
|    | V3 70 0                                                                                                                                                                                                   |   |
| 27 | Check the continuity of the function $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x < 2\\ 4, & \text{if } x = 2\\ \frac{e^{4x} - 1}{x}, & \text{if } x > 2 \end{cases}$ at the point $x = 2$ | 3 |
|    | Check the continuity of the function $f(x) = \begin{cases} x-2 & \text{if } x = 2 \\ 4 & \text{if } x = 2 \end{cases}$ at the point $x = 2$                                                               |   |
|    | $\frac{e^{4x-1}}{e^{4x-1}} \text{ if } x > 2$                                                                                                                                                             |   |
|    | $\begin{pmatrix} x & y, y, z, z \end{pmatrix}$                                                                                                                                                            |   |
| 28 | $\int_{0}^{\pi} \sqrt{\tan x}$                                                                                                                                                                            | 3 |
|    | Evaluate: $\int_0^{\frac{n}{2}} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} dx$                                                                                                                               |   |
| 20 | dv -                                                                                                                                                                                                      | 3 |
| 29 | (a) Solve the differential equation : $cosx \frac{dy}{dx} + y = sinx \ given \ that \ y = 3$                                                                                                              | 3 |
|    | when x = 0                                                                                                                                                                                                |   |
|    | OR                                                                                                                                                                                                        |   |
|    | (b) Solve the differential equation : $(1 + cos2x)dy - (1 - cos2x)dx = 0$ , given that                                                                                                                    |   |
|    | y = 2 when $x = 0$                                                                                                                                                                                        |   |
| 30 | A function f is defined from set A to set B defined by $f(x) = \frac{x-3}{x-2}$ , where $A = R - \{2\}$                                                                                                   | 3 |
|    | and $B=R-\{1\}$ .Show that f is a bijective function.                                                                                                                                                     |   |
|    | OR                                                                                                                                                                                                        |   |
|    | Show that the function $f:[0,\infty)\to [1,\infty)$ given by $f(x)=x^2+2x+1$ is both one and onto.                                                                                                        |   |
| 31 | Find $\frac{dy}{dx}$ if $y = x^{\sin x} + (\sin x)^x$                                                                                                                                                     | 3 |
|    | $\operatorname{Find} \frac{dx}{dx}  ij   y = x \qquad +  (sinx)$                                                                                                                                          |   |
|    | SECTION-D                                                                                                                                                                                                 |   |
| 32 | Find the area bounded by the parabola $y^2 = 2x$ , the line $2x + 3y = 10$ and the x-axis, in                                                                                                             | 5 |
|    | the first quadrant.                                                                                                                                                                                       |   |
| 22 | On the set 7 of all integers, consider the relation defined by                                                                                                                                            |   |
| 33 | On the set Z of all integers, consider the relation defined by $R = \{(a,b) : a-b \text{ is divisible by } 3\}$ . Show that R is an equivalence relation on Z. Also                                       | 5 |
|    | find the partitioning of Z into mutually disjoint equivalence classes.                                                                                                                                    |   |
|    | OR                                                                                                                                                                                                        |   |
|    | Let N be the set of all natural numbers and let R be a relation on N X N defined by                                                                                                                       |   |
|    | (a,b)R (c,d) if and only if ad=bc . Show that R is an equivalence relation.                                                                                                                               |   |
|    |                                                                                                                                                                                                           |   |
|    |                                                                                                                                                                                                           |   |
|    |                                                                                                                                                                                                           |   |

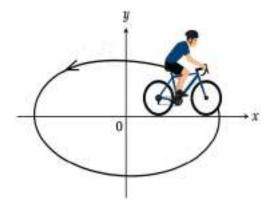
| 24 | F A A A] F1 1 1]                                                                                                                                                                                                                                                                       |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 34 | Given $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ Find AB.Use this product to solve                                                                                     | 5 |
|    | the following system of linear equations:                                                                                                                                                                                                                                              |   |
|    | x - y + z = 4                                                                                                                                                                                                                                                                          |   |
|    | x - 2y - 2z = 9                                                                                                                                                                                                                                                                        |   |
|    | 2x + y + 3z = 1                                                                                                                                                                                                                                                                        |   |
| 35 | (a) Find the intervals in which the function $f(x) = 2x^3 - 21x^2 + 72x + 6$ is (b) (a) strictly increasing (b) strictly decreasing                                                                                                                                                    | 5 |
|    |                                                                                                                                                                                                                                                                                        |   |
|    | OR                                                                                                                                                                                                                                                                                     |   |
|    | (c) Find the points of local maxima and local minima of the function                                                                                                                                                                                                                   |   |
|    | $f(x) = \sin 2x - x, -\frac{\pi}{2} < x < \frac{\pi}{2}.$                                                                                                                                                                                                                              |   |
|    | SECTION-E                                                                                                                                                                                                                                                                              |   |
| 36 | A ladder of length 5 metres is placed along a vertical wall in such a way that it is free to slide up or down the wall. Let <b>y</b> be the distance of the foot of the ladder from the wall, and <b>x</b> be the height of the top of the ladder from the floor at a certain instant. |   |
|    |                                                                                                                                                                                                                                                                                        |   |
|    | Based on the above information, answer the following questions:                                                                                                                                                                                                                        |   |
|    | (i) Express 'y' in terms of 'x'                                                                                                                                                                                                                                                        | 1 |
|    | (ii) Find $\frac{dy}{dx}$ in terms of x                                                                                                                                                                                                                                                | 1 |
|    | (iii)  (a) If the foot of the ladder is being pulled towards the wall such that the rate of decrease of the distance <b>y</b> is <b>2 m/s</b> , then at what rate is the height <b>x</b> on the wall increasing when the foot of the ladder is <b>3 m</b> away from the wall?  OR      | 2 |
|    | (b) If the ladder is being pushed downwards such that the rate of decrease of its height <b>x</b> on the wall is <b>3 m/s</b> , then at what rate is the foot of the ladder moving away from the wall when the height on the wall is <b>3 m</b> ?                                      | 2 |
|    |                                                                                                                                                                                                                                                                                        |   |

37

A company sells three products: P, Q, and R in two different cities. The sales (in lakhs of rupees) for the first quarter and second quarter are given by:

First Quarter:  $A = \begin{bmatrix} 12 & 10 & 8 \\ 15 & 9 & 11 \end{bmatrix}$ 

Second Quarter:  $B = \begin{bmatrix} 14 & 11 & 9 \\ 16 & 10 & 12 \end{bmatrix}$ 


Rows represent City1 and City 2, columns represent products P,Q and R.

Based on the above information, answer the following questions:

- (i) Find the total half-yearly sales for each product in both cities
- (ii) Find the increase in sales from the first to the second quarter.
- (iii)
- (a) If the price of each product is 2000,1500 and 1000 respectively, find the revenue in each city for both quarters using matrix multiplication.
- (b) Find the matrix  $B^T A$
- 38

A cyclist pedals around a closed elliptical track. The position of the cyclist at time t seconds is given by the parametric equations  $x = 5 \cos t$ ,  $y = 4 \sin t$ ,  $0 \le t \le 2\pi$ 

where x and y are measured in metres from a fixed origin and t=0 corresponds to the point (5,0).



Based on the above information, answer the following questions:

- (i) Calculate the slope of the tangent to this path at  $t = \frac{\pi}{4}$
- (ii) Calculate  $\frac{d^2y}{dx^2}$

2

1

1

2

2

2