

RAN PUBLIC SCHOOL

HALF YEARLY EXAMINATION (2025 - 2026) (SET 1)

SUBJECT: MATHEMATICS (041) CLASS: XI (SCIENCE)

MAX. MARKS: 80 DURATION: 3 hrs

General Instructions:

 This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2 Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3 Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

Section D has 4 Long Answer (LA)-type questions of 5 marks each.

Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION – A Questions 1 to 5 carry 1 mark each.

1. The nur	nber of subsets o	of a set conta	ining n elements is:-
(a) 2 ⁿ	(b) 2 ⁿ - 1	(c) n"	(d) None of thes

Conjugate of complex number i³ – 4 is:-

(a) $i^3 + 4$ (b) 4 - i (c) -4 + i (d) none of these

For what value of k, coefficients of x² and x³ will be equal in the expansion of (3 + kx)⁹?

(a) $\frac{4}{5}$ (b) $\frac{5}{7}$ (c) $\frac{9}{7}$ (d) $\frac{11}{7}$

4. Given set A = {1, 2, 3,, 10}. Relation R is defined in set A as R = {(a, b) E A × A : a = 2b}.

Then range of relation R is:_

(a) {2, 4, 6, 8, 10} (b) {1, 3, 5, 7, 9}

(c) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5)} (d) {1, 2, 3, 4, 5}

5. The value of sin $(45^{\circ} + \theta)$ – cos $(45^{\circ} - \theta)$ is:-

(a) 2 cos θ (b) 2 sin θ (c) 1 (d) 0

The minimum value of 4* + 4*3, x∈R is:

(a) 1 (b) 2 (c) 0 (d) 4

7. If tan A = $\frac{1}{2}$ and tan B = $\frac{1}{3}$, then tan(2A + B) is equal to:

(a) 1 (b) 2 (c) 3 (d) 4

8. 1 +1- +14 +16 + +120 is:

(a) positive	(b) negative	(e) 0	(d) ==	neet he day			
		200		nnot be deter	000		
	cient of x ⁿ in the	e expansion of	(1+x) ²ⁿ	and (1+x) ²ⁿ⁻¹	are in th	ne ratio :	
(a) 1:2	(b) 1:3	(c) 3:1	(d) no	ne of these			
10. The mini	mum value of 3	cos x + 4 sin x	+ 8 is:-	100			
(a) 5	(b) 9	(c) 7	(d) 3				
11. Two finite more than th	e sets have m a nat of second se	nd n elements. et. The values o	The nu	mber of subse	ets of the	e first set is 112	
(a) 4, 7		(c) 4, 4		The state of the s	- 1.W	-	
12. If 15p, = 2	730, then ⁵ P _r .						
(a) 3	(b) 30	(c) 60	(d) 20		77		
13. All the le of such arrar	tters of the wo	rd 'EAMCOT ' ar	e arran rels are	ged in differen adjacent to ea	t possib	le ways. The num	be
(a) 360	(b) 144	(c) 72	(d) 54			8,0744	
14. If -3x + 1	7 < -13, then	100			No.		١
(a) x ∈ (10, ∘	∞) (b) x	€ [10, ∞)	(c) x ([(-∞, 10]	(d) x	€ [-10, 10)	1
	x ≥ 9, then x €						
(a) (- ∞, - 1)	U (3, ∞)	(b) (- ∞, 1] ((2, ∞)				
(c) (-∞, -1)	∪ (0, ∞)	(d) (-∞, -1) t	J (2, ∞)				
16. If 3x - 1 -	< 5 + x, 6 - 5x ≤	1, then x ∈	Sec. 1				
(a) [1, 3]	(b) [- 1, 3]	(c) [1,	. 3)	(d) (t	1, 3)		
17. If [x] ² - 5	5(x) + 6 = 0, whe	ere [·] denotes	the gre	atest integer f	unction,	then	
(a) x ∈ [3, 4	1	(b) x ∈ (2, 3)		(c) x ∈ [2, 3	1	(d) x ∈ [2, 4)	
18. Find the	modulus of $\frac{1+i}{1-i}$:-				10.700	
(a) 1	(b) 4		(c) 2		(d) 3		
For Q19 and Choose the	Q20, a statem correct answer	ent of assertion out of the follo	n (A) is owing c	followed by a hoices.	stateme	nt of reason (R).	
Assertion (A (b) Both Ass Assertion (A	ertion (A) and i	Reason (R) are t	rue & R			t explanation of	of

19. Assertion (A): If the letters W, I, F, E are arranged in a row in all possible ways and the words (with or without meaning) so formed are written as in a dictionary, then the word WIFE occurs in the 24th position.

Reason (R): The number of ways of arranging four distinct objects taken all at a time is C(4,4)

20. Assertion (A): The sum of first 6 terms of the GP 4, 16, 64, ... is equal to 5460.

Reason (R): Sum of first n terms of the G. P is given by $S_n = \frac{a(r^n - 1)}{r-1}$, where a =first term, r =common ratio and |r| > 1

SECTION - B

Questions 21 to 25 carry 2 marks each.

- 21. If $U = \{x : x \le 10, x \in \mathbb{N}\}$, $A = \{x : x \in \mathbb{N}, x \text{ is prime}\}$, $B = \{x : x \in \mathbb{N}, x \text{ is even}\}$, write $A \cap B'$ in roster form.
- 22. Find n, if: 2n-1pn: 2n+1pn-1 = 22:7
- 23. Solve for x: |x+1| + |x| > 3.
- 24. Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$.
- 25. How many words can be formed using all the letters of the word EQUATION so that (i) all the vowels are together, (ii) consonants occupy the odd places?

SECTION - C

Question 26 to 31 carry 3 marks.

- **26.** Find the domain and range of the function $\{(x, \frac{1}{1-x^2}) : x \in R, x \neq \pm 1\}$
- 27. Prove that: $\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right) = -\frac{3}{4} \sin 3x$
- **28.** If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 y^2)$.
- 29. Find $(a + b)^4 (a b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$.
- The number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements,
- (i) do all the vowels always occur together (ii) do all the vowels never occur together
- (iii) do the words begin with I and end in P.
- 31. If $f(x) = x^3 \frac{1}{x^4}$, then find $f(x) + f(\frac{1}{x})$.

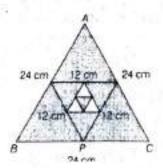
SECTION - D(Case Study Based Questions)

Questions 32 to 35 carry 5 marks each.

32. If a and b are the roots of $x^2 - 3x + p = 0$ and c, d are roots of $x^2 - 12x + q = 0$, where a; b, c, d form a G.P. Prove that (q + p) : (q - p) = 17:15.

OR

Let S be the sum, P the product and R the reciprocals of n terms in a G.P. Prove that P2Rn = Sn

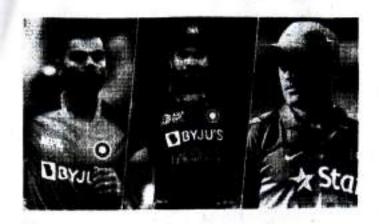

- 33. If |z + 1| = z + 2(1+i), then find the value of z.
- **34.** Find the value of $\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8}$.
- 35. Find n, if the ratio of the 7th term from the beginning to the 7th term from the end in the expansion of $(\sqrt[3]{2} + \frac{1}{\sqrt[3]{2}})^n$ is 1 : 6.

SECTION - E

Questions 36 to 38 carry 4 marks each.

36. Case-Study 1:

In Rangoli competition in school, Preeti made Rangoli in the equilateral shape. Each side of an equilateral triangle is 24 cm. The mid-point of its sides are joined to form another triangle. This process is going continuously infinite.

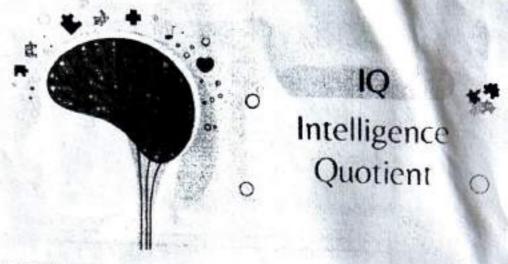


Based on above information, answer the following questions.

- (a) Find the side of the 5th triangle is (in cm) (1)
- (b) Find the sum of perimeter of first 6 triangle is (in cm) (2)

OR

- (b) Find the area of all the triangle is (in sq cm). (2)
- (c) Find the sum of perimeter of all triangle is (in cm). (1)
- 37. In a city of 56,000 people, following is the number of fans of players Rohit (R), Virat (V) and Dhoni (D):



Players	Number of Fans			
Rohit	23,000			
Virat	25,000			
Dhoni	18,000			
Rohit and Virat	12,000			
Rohit and Dhoni	10,000			
Virat and Dhoni	8,000			
Rohit, Virat and Dhoni	3,000			

Based on the above information, answer the following:

- (i) How many people are fans of at least 2 players?
- (ii) How many people are fans of exactly 1 player?
- (iii) How many people are fans of exactly 2 players?
- (iv) How many people follow R or V but not D?

38. An intelligence quotient (IQ) is a total score derived from a set of standardised tests or subtests designed to assess human intelligence. The abbreviation "IQ" was coined by the psychologist William Stern for the German term Intelligence quotient, his term for a scoring method for intelligence tests at University of Breslau he advocated in a 1912 book.

Manjula is a Psychology student and nowadays she is learning about Intelligence Quotient (IQ). She calculates the result as follows:

Intelligence Quotient = $\frac{Mental\ age}{Chronological\ Age} \times 100$

- a) What could be the range if mental age if a group of children with chronological age of 15 years have the IQ range as $90 \le IQ \le 150$?
- (b) What could be the range of IQ if a group of children with age of 12 years have the mental age range as $9 \le MA \le 15$?

OR

(b) What could be the range of IQ if a group of children with mental age of 18 years have the mental age range as $12 \le CA \le 15$?