

MIND CURVE Mid Term Maths Test Series 2025-26

Test 04

By Deepika Bhati Teaching Mathematics Passionately since 2009

S no	Syllabus Covered	Chapters(In Half Yearly)	Marking Scheme
1	Chapter 7	Triangles	40

Note: Students/Teachers can refer to this Sample Paper for practice purpose. However, students may find or experience different exam pattern as syllabus or marking scheme may vary school to school.

MM:40

GENERAL INSTRUCTIONS

Time1.5Hrs

READ CAREFULLY ALL INSTRUCTIONS

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 10 MCQs carrying 1 mark each
- 3. Section B has 3 questions carrying 02 marks each.
- 4. Section C has 2 questions carrying 03 marks each.
- 5. Section D has 2 case based integrated units of assessment (04 marks each) with sub parts of the values of 1, 1 and 2 marks each respectively.
- 6. Section E has 2 questions carrying 05 marks each.
- 7. All Questions are compulsory.
- 8. This paper consists of 19 questions.
 - a. Write your answers neatly and legibly.
 - b. Ensure you have not left any question unanswered

SECTION – A

Questions 1 to 10 carry 1 mark each.

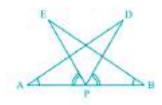
- 1. If AB = QR, BC = PR and CA = PQ, then
 - (a) \triangle PQR \cong \triangle BCA

(b) \triangle BAC \cong \triangle RPQ

(c) \triangle CBA \cong \triangle PRQ

(d) \triangle ABC \cong \triangle PQR

- 2. In triangles ABC and DEF, AB = FD and \angle A = \angle D. The two triangles will be I congruent by SAS axiom if (a)BC=EF (b)AC= DE (c)AC=EF (d)BC=DE
- **3.** In the given figure PQ= QR, \angle QPR = 48° , \angle SRP = 18° , then \angle PQR=

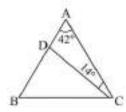

 $(a)48^{\circ}$

(b)84°

 $(c)30^{\circ}$

(d)36°

4. AB is a line segment and P is the mid-point . D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (See Figure) Which of the following is true?

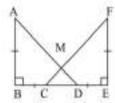

 $(a)\Delta PBD \cong \Delta BPE$

(b) $\angle APE = \angle DPE$

(c)AP=BE

(d)None of these

5. In the given figure AB-AC, $\angle A$ -42° and $\angle ACD = 14$ °. $\angle BCD$ is equal to:

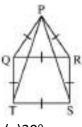

(a)55°

(b)69°

(c)45°

(d)50°

6. In the given figures AB LBE and EFL BE. Also BC=DE and AB=EF then


(a) \triangle ABD \cong \triangle FEC

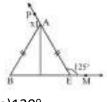
(b) $\triangle ABD \cong \triangle EFC$

(c) $\triangle ABD \cong \triangle CMD$

(d) $\triangle ABD \cong \triangle CEF$

7. In the given figure PQR is an equilateral triangle and QRST is square . Then $\angle PSR$

(a)30°


INFINITY
THINK DEVOND

(h) 150

(c) 90°

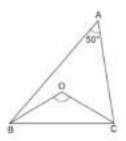
(d) 60°

8. In figure ,AB=AE , \angle ACM = 125⁰ and \angle PAB = X. Find the value of x .

 $(a)130^{\circ}$

(b)110°

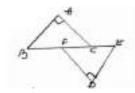
(c) 100°


(d)120°

Question numbers 9 and 10 are Assertion and Reason based questions

Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

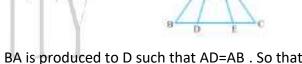
- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- 9. Assertion (A): In the given figure, BO and CO are the bisectors of $\angle B$ and $\angle C$ respectively . If $\angle A = 50^{\circ}$ then $\angle BOC = 115^{\circ}$


Reason (R): The sum of all interior angles of a triangle is 180°

10. **Assertion (A):** Angles opposite to equal sides of a triangle are not equal. **Reason (R):** sides opposite to equal angles of triangle are equal.

SECTION – B Questions 11 to 13 carry 2 mark each.

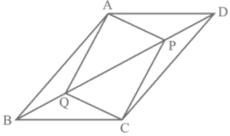
11.(A) In the given figure BA is perpendicular to AC , DE is perpendicular to DF such that BA = DE and BF = EC. Show that \triangle ABC \cong \triangle DEF.



OR

(B)The given figure \angle BCD = \angle ACD and \angle ACB = \angle BDA. Prove that AD = DB and \angle A= \angle B.

12. In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.

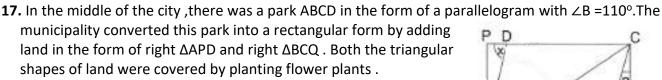

- 13.(A) \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD=AB . So that angle BCD is a Right angle.
 - OR (B)BE and CF are two equal altitude of a \triangle ABC. Using RHS congruence rule , Prove that the \triangle ABC is isosceles

$\begin{array}{c} SECTION-C \\ \text{Questions 14 to 15 carry 3 mark each} \end{array}$

14. (A)D, E, F are the midpoints of the sides BC,CA and AB respectively of \triangle ABC , then \triangle DEF \cong \triangle AEF

OR

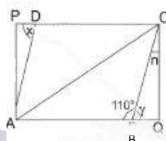
- (B)In an isosceles \triangle ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at O. Join A to O. Show that: (i) OB = OC (ii) AO bisects \angle A
- **15.** In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig.). Show that:
 - (i) \triangle APD \cong \triangle CQB
 - (ii) \triangle AQB \cong \triangle CPD


SECTION - D

Questions 16 & 17 carry 4 mark each.

- **16.** A children's park is in the shape of an isosceles ΔPQR with PQ=PR, S and T are points on QR such that QT=RS. Based on the above information, answer the following questions:
 - (i)If $\angle R = 70^{\circ}$, Find $\angle QPR$
 - (ii)If \angle PST= 80°, Find \angle QPS
 - (iii)(a)Show that $\triangle PQT \cong \triangle PRS$.

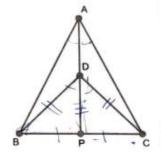
OR


(b)Is $\triangle PQS \cong \triangle PRT$. Justify your answer.

- (i)What is the value of $\angle x$?
- (ii)What is the value of $\angle n$?
- (iii)(a) Prove that $\triangle APD$ and $\triangle CQB$ are congruent .

OR

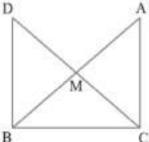
(b)Prove that $\triangle AQC$ and $\triangle CPA$ are congruent.


SECTION – E

Questions 18 & 19 carry 5 mark each

- **18.** \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and Dare on the same side of BC. If AD is extended to intersect BC at P, show that A
 - (i) \triangle ADO \cong \triangle ACD
 - (ii) \triangle ABP \cong \triangle ACP
 - (iii) (a)AP bisects $\angle A$ as well as $\angle D$.

OR


(b)AP is the perpendicular bisector of BC.

- **19.** In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined
 - to M and produced to a point D such that DM = CM. Point D is joined to point B Show that:
 - (i) \triangle AMC \cong \triangle BMD
 - (ii) ∠ DBC is a right angle.
 - (iii)(a) $\triangle DBC \cong \triangle ACB$

Or

(b)CM= $\frac{1}{2}$ AC

To get more sample papers , practice papers , study material for Maths (only for CBSE IX-X) join my whatsapp group at link shared below

https://chat.whatsapp.com/ICdBeP9GNOd4hOdZxC6C5W