Venkateshwar Global School, Rohini Mid Term Examination (2025-26) Mathematics

Time: 3 Hours

M.M: 80

Subject Code: 041 Date: 25-08-2025 Name: ANUSHHA JINDAL

Class: XI

Section: COWHEA

Roll No.: 8

General instructions:

- This question paper contains five sections A, B, C, D and E. Each section is compulsory. However there are internal choices in some questions.
- Section A has 18 MCQs and 2 Assertion Reason based questions of 1 mark each.
- Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
- Section C has 6 Short Answer (SA) type questions of 3 marks each.
- Section D has 4 Long Answer (LA) type questions of 5 marks each.
- Section E has 3 source based / case based / integrated units of assessment
 (4 marks each) with sub parts.

Section A

- If a set A contains 3 elements, then its power set contains
- a) 9 elements

b) 8 elements

c) 3 elements

- d) None of these
- 2. The value of $\sin (45^0 + \theta) \cos (45^0 \theta)$ is
- ·a) 0
- b)
- c) -1
- d) None of these
- 3. If $A = \{2, 3, 4, 5, 6\}$ and R is a relation on set A defined by $R = \{(x, y) : y = x + 2, x, y \in A\}$, then R is
- -a) {(2, 4), (3, 5), (4, 6)}
- b) {(4, 2), (5, 3), (6, 4)}
- c) {(2, 4), (5, 3), (4, 6)}
- d) {(4, 2), (3, 5), (4, 6)}
- 4. The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (-2, 6). The third vertex is
- a) (0,0)
- b)

(4, 7)

- -c) (7, 4)
- d) (7, 7)

5		If $A = \{a, b\}$ and $B = \{x, y, z\}$, then the number of relations from B to A is						
a			b)		c)	32	-d)	64
		The value of $\sin\left(\frac{-11\pi}{3}\right)$ is						
6	G 30	50000		2/\3	(0)	- 1/√3	d)	v3
·a)	N3/2	b)	2/4	entin ie	2 and the las	term is	384, then the number of terms
7		In a G.P. if first term is 3/4, common ratio is 2 and the last term is 384, then the number of terms of G.P. is						
a		8	-b)	9	c)	10	d)	11
8		The two lines $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$ are perpendicular if						
		$a_1 a_2 + b_1 b_2 = 0$			b)	$a_1 b_2 = a_2 b$	1	
c)	$a_1 b_1 + a_2 b_2 = 0$				$a_1 b_2 + a_2 b_1 = 0$		
9	9.	The domain for which the functions defined by $f(x) = 6x^2 + 1$ and $g(x) = 11 - 7x$ are equal is						
а	a)	$\left\{-1, \frac{2}{3}\right\}$	b)	$\{3, \frac{5}{6}\}$	-c)	$\left\{-2, \frac{5}{6}\right\}$	d)	$\{2, \frac{2}{3}\}$
		If $z = \cos \frac{\pi}{4} +$						
	a)			1/2		√3/2	d)	None of these
					7.0		re of circ	le when radius is 14 cm is
		5/7 radians	********	b)		radians .		
	c)	5/14 radians			7/10	radians		
		2. The real value of a for which $3i^3 - 2ai^2 + (1-a)i + 5$ is real is						
	a)	a = - 2		a = 2				a = -5/2
	6.1	. The inclination of the line $x - y + 3 = 0$ with positive direction of $x - axis$ is						
		45°	•b)	135 ⁰		- 45 ⁰	d)	- 135 ⁰
		The value of $3 \sin \frac{\pi}{6} \cdot \sec \frac{\pi}{3} - 4 \sin \frac{5\pi}{6} \cdot \cot \frac{\pi}{4}$ is						
	a)	-1	b)	0	-c)	1	d)	2
	15.	If $z = \overline{z}$, then z lies on						
	a)	x – axis	b)	y – axis	c)	origin	d)	None of these
3	6	If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P., then the common ratio of G.P. is						
	a)	3	b)	1/3	T)	2	d)	1/2
	17.	7. If $\sin x = 1/3$, then the value of $\sin 3x$ is						
	a)	1	b)	0	-c)	23/27	d)	$-\frac{23}{27}$
	18.	The solution	set of 6	≤-3 (2x-4)	< 12, x e	R is		
		(0, 1]	b)	[1, 0)		(0, 1)	d)	[0, 1]

ASSERTION - REASON BASED QUESTIONS:

In the following questions, a statement of assertion (A) is followed by a statement of reason (R).

Choose the correct answer out of the following choices.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true
 - 19. Assertion (A): The value of $\sin 50^6 \sin 70^6 + \sin 10^6 = 0$

Reason (R): $\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{y-x}{2}$

20. Assertion (A): The equation of the line passing through the point (1, 4) and parallel to the line 4x + y - 7 = 0 is 4x + y - 8 = 0.

Reason (R): Lines with slopes m_1 and m_2 are perpendicular iff $m_1m_2=-1$.

Section B

- A and B are two sets such that n(A − B) = 14 + x, n(B − A) = 3x and n(A ∩ B) = x. Draw a Verm diagram to illustrate this information. If n(A) = n(B), find the value of x.
- 22. If A = {2, 4, 6, 9}, B = {4, 6, 18, 27, 54} and a relation R from A to B is defined by R = {(a, b): a ∈ A, b ∈ B, a is a factor of b and a < b}, then find R in roster form. Also find its domain and range.</p>
- 23. If $z = \frac{1+i}{\sqrt{2}}$, then find the value of $z^6 + z^4 + z^2 + 1$.
- 24) If $a = \frac{2 \sin x}{1 + \cos x + \sin x}$, then prove that $\frac{1 \cos x + \sin x}{1 + \sin x}$ is also equal to a.
- If one geometric mean G and two arithmetic means p and q are inserted between two numbers, show that $G^2 = (2p q)(2q p)$.

Section C

- If A, B and C are three sets such that A U B = C and A \cap B = ϕ , then show that A = C B (using properties of sets).
- 27. Find the domain and range of the function $f(x) = \frac{x^2 x + 1}{x^2 + x + 1}$
- 28. Prove that $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x \frac{\pi}{3}\right) = \frac{3}{2}$.
- Find the real values of x and y for which the complex numbers 3 + ix²y and x² + y + 4i are conjugate of each other.
- 30. The sum of two numbers is 6 times their geometric mean, show that the numbers are in the ratio $(3 + 2\sqrt{2})$: $(3 2\sqrt{2})$.
- 31. Find the angle between the lines $y = (2 \sqrt{3})(x + 5)$ and $y = (2 + \sqrt{3})(x 7)$.

Section D

- 32. a) If $P = \{x \mid x^2 + 14x + 40 = 0\}$, $Q = \{x \mid x^2 5x + 6 = 0\}$ and $R = \{x \mid x^2 + 17x 60 = 0\}$, then find $P \cap (Q \cup R)$ and $P \cup (Q \cap R)$.
 - b) Find the quotient of the identity function by the modulus function.
- 33. If $\tan \frac{\theta}{2} = \sqrt{\frac{a-b}{a+b}} \tan \frac{\phi}{2}$, prove that $\cos \theta = \frac{a \cos \phi + b}{a + b \cos \phi}$.
- •34. Show that the sum and product of two complex numbers are real iff they are conjugates of each other.
- 35 If b is the least value of the product of the roots of the equation (m² + 1) x² 3x + (m² + 1)² = 0 and c is the greatest value of the sum of its roots, then find the sum of first five terms of the G.P. whose first term is (b + 2) and the common ratio is 2c⁻¹.

Section E

Case Study 1:

36. Tanya wants to cut three lengths from a single piece of rod of length 91 cm to play a game. The length of the second piece should be 3 cm longer than the shortest and the length of third piece should be twice as long as the shortest.

Based on the above information answer the following questions.

- (i) Find the maximum possible length of the shortest piece.
- (ii) Find the possible lengths of the shortest piece if the third piece is to be atleast 5 cm longer than the second piece.

Case Study 2:

37. A company introduced a battery powered home décor product at a price of ₹ 100. From the following year onward, the company redesigned the product and increased its price by 10% compared to the previous year.

Based on the above information answer the following questions.

- (i) What will be the price of the product in the 2nd year?
- (ii) Check whether the prices in four consecutive years form a Geometric progression.
- (iii) Find the sum of first four years' prices using the appropriate formula.

Case Study 3:

Three students of Class 11 named A, B, C are standing in a playground at positions (1, 4), (2, -3) and (-1, -2) with respect to two mutually perpendicular lines drawn in the playground. AM is the altitude from vertex A on side BC and AD is the median meeting side BC at D.

Based on the above information answer the following questions.

- (i) Find the coordinates of mid-point D of side BC.
- (ii) Find the distance between A and B.
- (iii) Find the equation of the median AD through A.