CBSE CHAPTER WISE QUESTION CLASS- XII MATHEMATICS 2025 Jitu Sharma

PREFACE

I am delightful to present this Chapter-wise Collection of Class XII CBSE Previous Year Questions of year 2025. This document covers all the 19 sets of question papers of the year 2025. This document represents the fruits of a collaborative labor of love between myself and my students, as we worked together to compile a comprehensive collection of previous year's questions.

I am convinced that this resource will be a game-changer for CBSE Class XII Mathematics students, offering them a unique window into the exam pattern, question types, and key concepts that are tested in the CBSE board exams. By delving into these questions, students will gain a richer understanding of the subject and develop the skills and confidence needed to excel in their exams.

I hope that this document will be a valuable companion for students, teachers, and educators, and that it will contribute to their academic success. I wish all the students the very best as they embark on their academic journeys, and I have no doubt that they will achieve great things.

JITENDER PRASAD
PGT MATHEMATICS
KENDRIYA VIDYALAYA SANGATHAN

COMPILED BY: -

1		JITENDER PRASAD	PGT MATHS- PMS KV NO.1 BOLANGIR
2		SMRUTI SIMRAN SAHU	STUDENT OF CLASS- XII (2025-26)
3	SAILESH KUMAR SAHOO 18-09-2024	SAILESH KUMAR SAHOO	STUDENT OF CLASS- XII (2025-26)
4		ADITYA KANTA BADATIA	STUDENT OF CLASS- XII (2025-26)
5		RITESH KUMAR SAHU	STUDENT OF CLASS- XII (2025-26)

INDEX

S.NO.	CONTENT	PAGE NO.
1	RELATION AND FUNCTION	4-12
2	INVERSE TRIGONOMETRIC FUNCTION	13-20
3	MATRICES	21-28
4	DETERMINANT	29-38
5	CONTINUITY AND DIFFERENTIABILTY	39-51
6	APPLICATION OF DERIVATIVES	52-66
7	INTEGRALS	67-86
8	APPLICATION OF INTEGRALS	87-93
9	DIFFERENTIAL EQUATIONS	94-103
10	VECTOR	104-114
11	3D	115-129
12	LINEAR PROGRAMMING PROBLEMS	130-144
13	PROBABILITY	145-161

1	CHAPTER -1 RELATION AND FUNCTION	T ~ .
		Code and
		Marks
A	ssertion (A): Let Z be the set of integers. A function $f: Z \to Z$ defined	65/1/
50%	as $f(x) = 3x - 5$, $\forall x \in Z$ is a bijective.	65/1/
R	eason (R) : A function is a bijective if it is both surjective and injective.	65/1/ 1marl
(2	A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of the Assertion (A).	Illian
(I	Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).	
((Assertion (A) is true, but Reason (R) is false.	
8522	Assertion (A) is false, but Reason (R) is true.	
A	class-room teacher is keen to assess the learning of her students the	65/1/
cc	ncept of "relations" taught to them. She writes the following five	65/1/
77370	elations each defined on the set $A = \{1, 2, 3\}$:	65/1/
K	$_{1} = \{(2, 3), (3, 2)\}$	4mar
R	$_{2} = \{(1, 2), (1, 3), (3, 2)\}$	TIII C
R	$_{3} = \{(1, 2), (2, 1), (1, 1)\}$	
R	$_{4} = \{(1, 1), (1, 2), (3, 3), (2, 2)\}$	
R	$_{5} = \{(1, 1), (1, 2), (3, 3), (2, 2), (2, 1), (2, 3), (3, 2)\}$	
37355	he students are asked to answer the following questions about the above lations :	
(i	Identify the relation which is reflexive, transitive but not symmetric.	
(i	 Identify the relation which is reflexive and symmetric but not transitive. 	
(i	 (a) Identify the relations which are symmetric but neither reflexive nor transitive. 	
	OR	
(i	ii) (b) What pairs should be added to the relation R2 to make it an	
	equivalence relation ?	
L	et R be a relation defined over N, where N is set of natural numbers,	65/2/
de	efined as "mRn if and only if m is a multiple of n, m, n ∈ N." Find hether R is reflexive, symmetric and transitive or not.	3mark

A school is organizing a debate competition with participants as speakers	65/2/1
$\mathbf{S} = \{\mathbf{S}_1,\ \mathbf{S}_2,\ \mathbf{S}_3,\ \mathbf{S}_4\} \text{ and these are judged by judges } \mathbf{J} = \{\mathbf{J}_1,\ \mathbf{J}_2,\ \mathbf{J}_3\}. \text{ Each }$	65/2/2
AND THE PROPERTY OF THE PROPER	65/2/3
speaker can be assigned one judge. Let R be a relation from set S to J	4mark
defined as $R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\}$. Based on the above, answer the following:	
(i) How many relations can be there from S to J?	
0.00 (1.00 (
(ii) A student identifies a function from S to J as f = {(S₁, J₁), (S₂, J₂),	
(S ₃ , J ₂), (S ₄ , J ₃)) Check if it is bijective.	
(iii) (a) How many one-one functions can be there from set S to set J? 2	
OR	
(iii) (b) Another student considers a relation $R_1 = \{(S_1, S_2), (S_2, S_4)\}$ in	
set S. Write minimum ordered pairs to be included in \mathbf{R}_1 so that	
R ₁ is reflexive but not symmetric. 2	
Prove that $f: N \to N$ defined as $f(x) = ax + b$ (a, b \in N) is one-one but not onto.	65/2/2 3mark
Let R be a relation on set of real numbers \mathbb{R} defined as $\{(x, y) : x - y + \sqrt{3} \text{ is an irrational number, } x, y \in \mathbb{R}\}$ Verify R for reflexivity, symmetry and transitivity.	65/2/3 3mark
For real x, let $f(x) = x^3 + 5x + 1$. Then:	65/4/1
(A) f is one-one but not onto on R	65/4/2
(B) f is onto on R but not one-one	65/4/3
(C) f is one-one and onto on R	03/4/3
(D) f is neither one-one nor onto on R	1 mark

8	(a) If $f: R^+ \to R$ is defined as $f(x) = \log_a x$ (a > 0 and a \neq 1), prove that f	65/4/1
	is a bijection.	65/4/2
	(R ⁺ is a set of all positive real numbers.)	65/4/3
	OR	3mark
	(b) Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$. A relation R from A to B is defined as $R = \{(x, y) : x + y = 6, x \in A, y \in B\}$. (i) Write all elements of R. (ii) Is R a function? Justify.	
	(iii) Determine domain and range of R.	
9	If $f: N \to W$ is defined as	65/4/2
	$\frac{n}{n}$ if n is even	65/4/3
	$f(n) = \begin{cases} \frac{n}{2}, & \text{if n is even} \\ 0, & \text{if n is odd} \end{cases}$ then f is:	1 mark
	(A) injective only (B) surjective only	
	(C) a bijection (D) neither surjective nor injective	
10	Assertion (A): Let $A = \{x \in \mathbb{R} : -1 \le x \le 1\}$. If $f : A \to A$ be defined as	65/5/1
	$f(x) = x^2$, then f is not an onto function.	65/5/2
	D (D) 10 1 1 1 1	65/5/3
	Reason (R): If $y = -1 \in A$, then $x = \pm \sqrt{-1} \notin A$.	1 mark
11	Let A be the set of 30 students of class XII in a school. Let $f: A \to N$, N is a	65/5/1
	set of natural numbers such that function $f(x) = \text{Roll Number of student } x$.	65/5/2
	On the basis of the given information, answer the following:	65/5/3
	(i) Is f a bijective function?	4 mark
	(ii) Give reasons to support your answer to (i).	
	(iii) (a) Let R be a relation defined by the teacher to plan the seating arrangement of students in pairs, where	
	$R = \{(x, y) : x, y \text{ are Roll Numbers of students such that } y = 3x\}.$	
	List the elements of R. Is the relation R reflexive, symmetric and transitive? Justify your answer.	
	OR	
	(iii) (b) Let R be a relation defined by	
	$R = \{(x, y) : x, y \text{ are Roll Numbers of students such that } y = x^3\}.$	
	List the elements of R. Is R a function? Justify your answer.	

20. Assertion (A): Let $f(x) = e^x$ and $g(x) = \log x$. Then $(f + g) x = e^x + \log x$ where domain of $(f + g)$ is R.	65/6/1 65/6/2
$Reason (R) : Dom(f + g) = Dom(f) \cap Dom(g).$	1 mark
28. (a) A student wants to pair up natural numbers in such a way that they satisfy the equation 2x + y = 41, x, y ∈ N. Find the domain and range of the relation. Check if the relation thus formed is reflexive, symmetric and transitive. Hence, state whether it is an equivalence relation or not. OR	65/6/1 65/6/2 65/6/3 3 mark
(b) Show that the function $f: N \to N$, where N is a set of natural numbers, given by $f(n) = \begin{cases} n-1, & \text{if } n \text{ is even} \\ n+1, & \text{if } n \text{ is odd} \end{cases}$ is a bijection.	
Let $f: A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$, where $A = R - \{3\}$ and $B = R - \{1\}$.	65/7/1 65/7/2 65/7/3
Discuss the bijectivity of the function.	2mark
(a) Show that the function $f:R\to R$ defined by $f(x)=4x^3-5,\ \forall\ x\in R$ is one-one and onto.	65/7/1 65/7/2 65/7/3
OR	3mark
(b) Let R be a relation defined on a set N of natural numbers such that R = {(x, y) : xy is a square of a natural number, x, y ∈ N}. Determine if the relation R is an equivalence relation.	
If R be a relation defined as aRb iff $ a-b >0$ a, $b\in\mathbb{R}$ then R is : (A) reflexive (B) symmetric	65/7/2 1mark
(C) transitive (D) symmetric and transitive	
Which of the following functions from Z to Z is both one-one and	65(B)
(A) $f(x) = 2x - 1$ (B) $f(x) = 3x^2 + 5$ (C) $f(x) = x + 5$ (D) $f(x) = 5x^3$	1 mark
Rajesh, a student of Class-XII, visited an exhibition with his family. There he saw a huge swing and found that it traced the path of a parabola $y = x^2$. The following questions came to his mind. Answer the questions: (i) Let $f: R \to R$ be a function defined as $f(x) = x^2$. Find whether	65(B) 4mark
	where domain of (f+g) is R. Reason (R): Dom(f+g) = Dom(f) ∩ Dom(g). 28. (a) A student wants to pair up natural numbers in such a way that they satisfy the equation 2x + y = 41, x, y ∈ N. Find the domain and range of the relation. Check if the relation thus formed is reflexive, symmetric and transitive. Hence, state whether it is an equivalence relation or not. OR (b) Show that the function f: N → N, where N is a set of natural numbers, given by f(n) = \begin{cases} n-1, & & & & & & & & & & & & & & & & & & &

- (ii) Let $f: R \to R$ be defined as $f(x) = x^2$. Find whether f is an onto function.
- (iii) (a) Let $f: N \to N$ be defined as $f(x) = x^2$. Find whether f is one-one function. Also, find if it is an onto function.

OR

(iii) (b) Let $f: N \to \{1, 4, 9, 16, \dots\}$ defined as $f(x) = x^2$, find where f is one-one function. Also, find if it is an onto function.

Q.	ANSWERS
1	(D) Assertion (A) is false, but Reason (R) is true.
2	(i) R_4 (ii) R_5 (iii) (a) R_1 and R_3 OR (iii) (b) Required pairs to be added to make the relation R_2 as an equivalence relation are: (1,1),(2,2),(3,3),(2,1),(3,1) and $(2,3)$
3	Let $x \in \mathbb{N}$. Then we know that x is a multiple of itself. $\Rightarrow xRx$ Hence, R is reflexive. We have $2,8 \in \mathbb{N}$ such that 8 is a multiple of $2 \Rightarrow 8R2$ But, 2 is not a multiple of 8. Hence, 2 is not R-related to 8. Therefore, R is not symmetric.
	Let $x, y, z \in N$ such that xRy, yRz Then $x=my, y=nz$ for some $m, n \in N$ $\Rightarrow x=mnz \Rightarrow x=pz$, where $p=mn \in N$. Hence, xRz Therefore, R is transitive.
4	 (i) The number of relations = 24×3=212 (ii) Since, S2 and S3 have been assigned the same judge J2, the function is not one-one. Hence, it is not bijective. (iii)(a) There cannot exist any one-one function from S to J as n(S) > n(J). Hence, the number of one-one functions from S to J is 0. OR (b) To make R1 reflexive and not symmetric we need to add the following ordered pairs: (S1, S1), (S2, S2), (S3, S3), (S4, S4)
5	Let $x1$, $x2 \in \mathbb{N}$ (Domain) such that $f(x1) = f(x2)$ $\Rightarrow ax1 + b = ax2 + b \Rightarrow x1 = x2$ Therefore, f is one-one. Let $y \in \mathbb{N}$ (codomain). Then $f(x) = y$ if, $ax + b = y$ i.e., if, $x = y - ba$, which may not belong to \mathbb{N} (domain) Therefore, f is not onto
6	Let $x \in \mathbb{R}$. Then we know that $x-x+\sqrt{3}=\sqrt{3}$, which is an irrational number. \Rightarrow $(x, x \in \mathbb{R}$ Hence, R is reflexive.

We have $\sqrt{3},2\in\mathbb{R}$ such that $\sqrt{3}-2+\sqrt{3}=2(\sqrt{3}-1)$, which is an irrational number $\Rightarrow (\sqrt{3},2)\in\mathbb{R}$. But, $2-\sqrt{3}+\sqrt{3}=2$, which is a rational number. Hence, \Rightarrow (2, $\sqrt{3}$) \notin R. Therefore, R is not symmetric. Let $-\sqrt{3}$, $\sqrt{3}$, $2 \in \mathbb{R}$ such that $(-\sqrt{3}, \sqrt{3})$, $(\sqrt{3}, 2) \in \mathbb{R}$. But, (-√3,2) ∉R Therefore, R is not transitive f is one-one and onto on R $f(x) = \log_a x \quad (a > 0, a \neq 1)$ 8 Let $x_1, x_2 \in R^+$ such that $f(x_1) = f(x_2)$ $\Rightarrow \log_a x_1 = \log_a x_2$ $\Rightarrow x_1 = x_2 \Rightarrow f \text{ is one-one.}$ Let $f(x) = y \Rightarrow \log_a x = y \Rightarrow a^y = x$ \therefore for every $y \in R$, there exists $x \in R^+$ \therefore f is onto. f is a bijection. OR $(i)R = \{(1,5),(2,4)\}$ (ii) R is not a function as 3 ∈ A do not have an image in co-domain. (iii) Domain of $R = \{1, 2\}$, Range of $R = \{4, 5\}$ 9 surjective only (B) (A) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A). 11 No, f is not bijective function (i) Range = $\{1, 2, 3, 4, \dots, 30\}$ and codomain = NSince, Range \neq codomain \Rightarrow f is not onto and hence f is not bijective. (iii) $R = \{(1,3), (2,6), (3,9), (4,12), (5,15), (6,18), (7,21), (8,24), (9,27), (10,30)\}$ Since $(1,1) \notin R \implies R$ is not reflexive. $(1,3) \in R$ but $(3,1) \notin R \implies R$ is not symmetric $(1,3) \in R$, $(3,9) \in R$ but $(1,9) \notin R \implies R$ is not transitive. OR (b) $R = \{(1,1), (2,8), (3,27)\}$ (iii) : elements 4, 5, 6 ... 30 do not have an image. Hence the above relation is not a function.

13 (a) $R = \{(1,39), (2,37), \dots, (20,1)\}$

Domain = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Range = $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39\}$

- (1, 1) does not belong to R hence not reflexive
- (1, 39) belongs to R but (39, 1) does not belong to R hence not symmetric
- (11, 19) and (19, 3) belong to R but (11, 3) does not belong to R hence not transitive. Hence R is not an equivalence relation.

OR

(a) Let f(x) = f(y)

Let x and y are both odd or both even

Then either x+1 = y + 1 or x-1 = y-1 gives

$$x = y$$

x odd and y even is rejected as

x + 1 = y - 1 gives x - y = -2 not possible as odd number and even number cannot differ by 2

Hence f is one-one

For onto: Let f(x) = y gives x = y + 1 or x = y - 1

If y is odd, x is even and if y is even, x is odd.

Range = N = co-domain, hence onto

As f is both one-one and onto hence bijective

Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2) \Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3} \Rightarrow x_1 = x_2$, \therefore 'f' is one-one.

For each $y \in B$, there exists $x = \frac{3y-2}{y-1} \in R - \{3\}$, such that f(x) = y, \therefore 'f' is onto

⇒ 'f' is one-one & onto, or 'f' is a bijective function.

(a) One-One: Let x₁, x₂ ∈ R such that

$$f(x_1) = f(x_2) \Rightarrow 4x_1^3 - 5 = 4x_2^3 - 5 \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2, \therefore \text{ 'f' is one-one}$$

Onto: $x \in R$ $(D_f) \Rightarrow x^3 \in R \Rightarrow 4x^3 - 5 \in R \Rightarrow f(x) \in R$, $\therefore R_f = Co-domain(f)$

.. 'f' is an onto function

⇒ 'f' is one-one & onto both

OR

(b) Reflexive: For any $x \in N$, $x \cdot x = x^2$, which is square of the natural number 'x'.

$$\Rightarrow (x, x) \in \mathbb{R}$$

.. 'R' is a Reflexive relation.

Symmetric: Let $(x,y) \in \mathbb{R} \Rightarrow xy$ is a square of a natural number

 \Rightarrow yx is a square of a natural number, \because xy = yx.

$$\Rightarrow (y,x) \in \mathbb{R}$$

∴ 'R' is a Symmetric relation.

Transitive: Let $(x,y),(y,z) \in \mathbb{R} \Rightarrow xy = a^2, yz = b^2$ for some $a,b \in \mathbb{N}$,

$$\therefore \frac{a^2}{y} = x, \frac{b^2}{y} = z \in N$$

$$\Rightarrow xz = \frac{a^2}{y} \cdot \frac{b^2}{y} = \left(\frac{ab}{y}\right)^2, \frac{ab}{y} \in N$$

$$\Rightarrow (x, z) \in R$$

∴ 'R' is a Transitive relation.
Hence, R is an Equivalence relation

16 (B) symmetric

17 (C) f(x)=x+5

18 (i) $f: \mathbf{R} \to \mathbf{R}$

$$f(x) = x^2$$

For $x_1 = -1$ and $x_2 = 1$ we have $f(x_1) = f(x_2) = 1$

Hence f is not a one -one function

(ii)
$$f: R \to R$$

 $f(x) = x^2$

 $for, y = -4 \in R(Codomain)$ there does not exist any $x \in R$ such that f(x) = -4 So f is not onto

(iii) (a)
$$f: N \rightarrow N$$

$$f(x) = x^2$$

Let, $f(x_1) = f(x_2)$ for some $x_1, x_2 \in N$

$$\Rightarrow x_1^2 = x_2^2$$

$$\Rightarrow x_1 = x_2$$

Hence, f is one-one

For,
$$y = 5 \in N$$
 (codomain)

there does not exist any x(domain) such that f(x)=5

So f is not onto

OR

```
(iii)(b) f: N \to \{1, 4, 9, 16...\}

f(x) = x^2

Let f(x_1) = f(x_2)

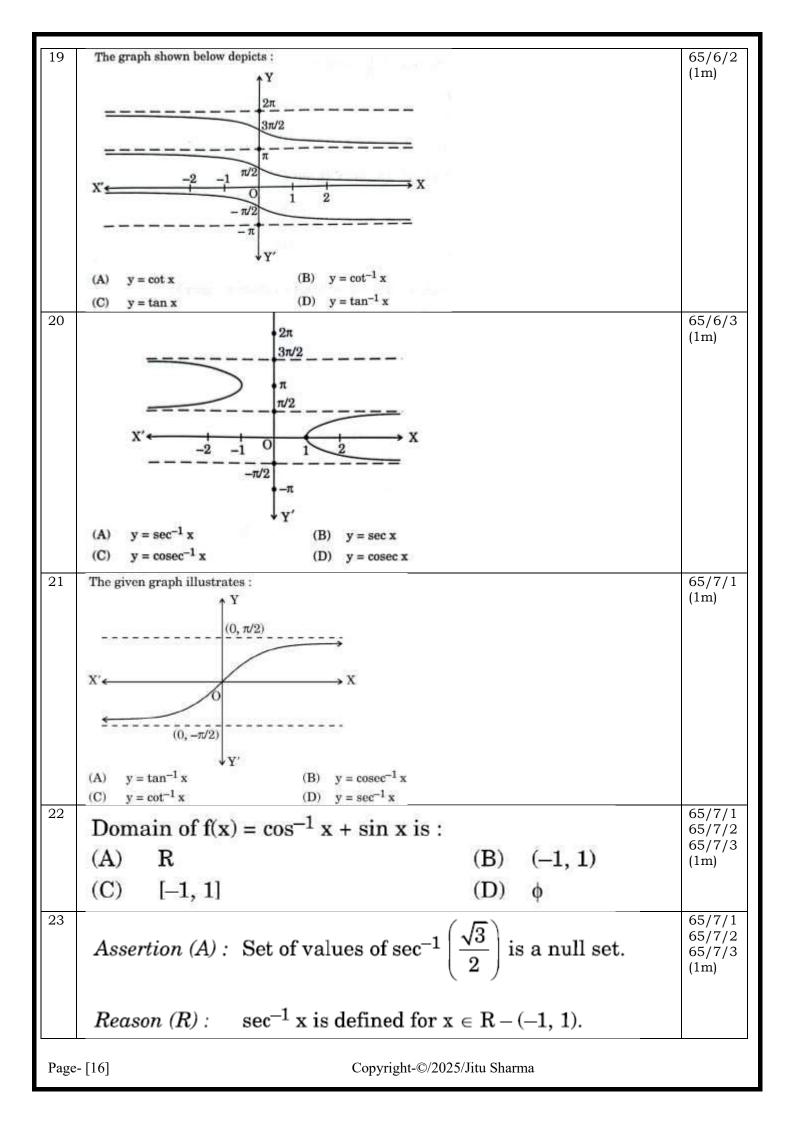
\Rightarrow x_1^2 = x_2^2

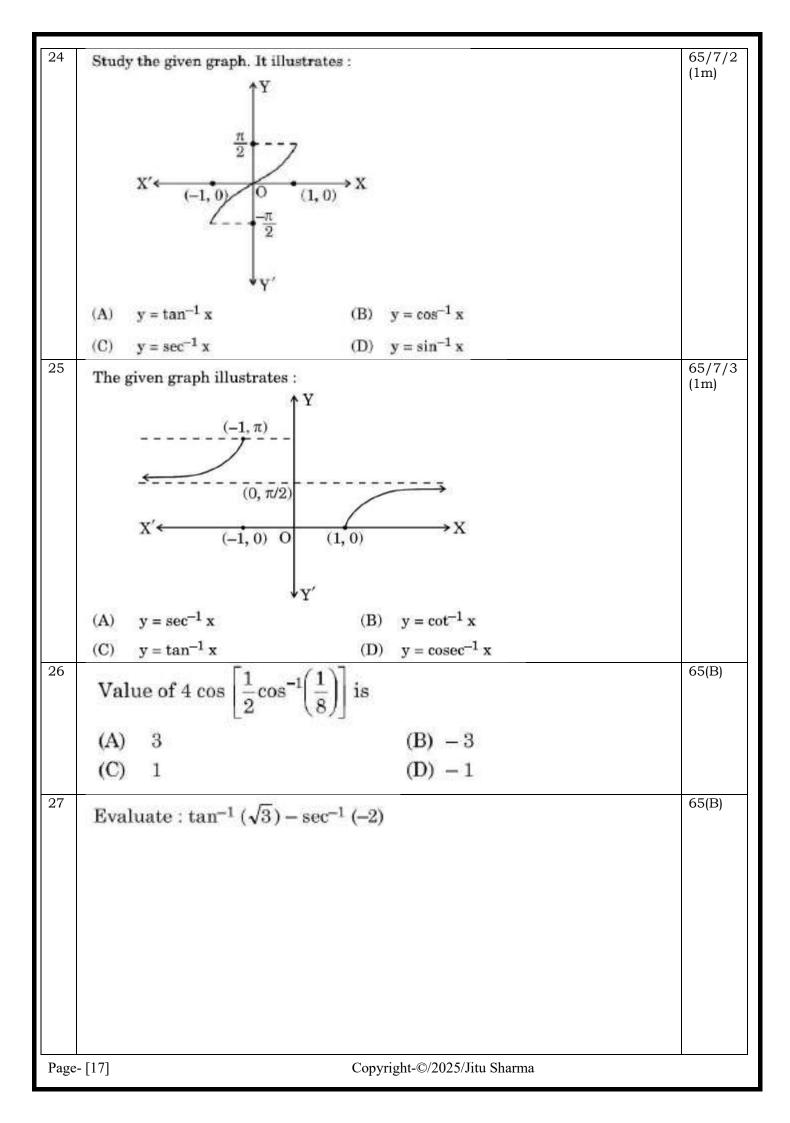
\Rightarrow x_1 = x_2

Hence f is one- one

\forall y \in \{1, 4, 9, 16, ...\} there exist x \in N such that f(x) = y

\therefore f is onto
```


	CHAPTER 2 INVERSE TRIGONOMETRIC FUNCTION		
Q.		Code and Marks	
1	The graph of a trigonometric function is as shown. Which of the following will represent graph of its inverse? (A) $\frac{\pi}{2}$ π (B) $\frac{\pi}{2}$ π	65/1/1 65/1/2 65/1/3 (1m)	
2	(c) $\frac{\pi}{2}$ Evaluate: $\tan^{-1} \left[2 \sin \left(2 \cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$	65/1/1 (2m)	
	2)		
3	Evaluate: $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$	65/1/2 (2m)	
4	Solve for x , $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1 + x^2} \right) = 4\sqrt{3}$	65/1/3 (2m)	
5	If $y = \sin^{-1}x$, $-1 \le x \le 0$, then the range of y is (A) $\left(\frac{-\pi}{2}, 0\right)$ (B) $\left[\frac{-\pi}{2}, 0\right]$ (C) $\left[\frac{-\pi}{2}, 0\right]$ (D) $\left(\frac{-\pi}{2}, 0\right]$	65/2/1 (1m)	


Copyright-©/2025/Jitu Sharma

Page- [13]

6	The principal value	of $\sin^{-1}\left(\cos\frac{43\pi}{5}\right)$ is	65/2/2 (1m)
	(A) $\frac{-7\pi}{5}$	(B) $\frac{-\pi}{10}$	
	(A) $\frac{-7\pi}{5}$ (C) $\frac{\pi}{10}$	(D) $\frac{3\pi}{5}$	
7	The value of $\cos\left(\frac{\pi}{6}\right)$	$+\cot^{-1}(-\sqrt{3})$ is	65/2/3 (1m)
	(A) -1 (C) 0	(B) $\frac{-\sqrt{3}}{2}$	
	(C) 0	(D) 1	
8	The principal valu	te of $\sin^{-1}\left(\sin\left(-\frac{10\pi}{3}\right)\right)$ is :	65/4/1 (1m)
	(A) $-\frac{2\pi}{3}$ (C) $\frac{\pi}{3}$	(B) $-\frac{\pi}{3}$	
	(C) $\frac{\pi}{3}$	$(\mathbf{D}) \frac{2\pi}{3}$	
9	(a) Simplify si	$ \ln^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right). $	65/4/1 65/4/2 65/4/3 (2m)
		OR	
	(b) Find domai	in of $\sin^{-1}\sqrt{x-1}$.	
10	The principal bran	nch of cos ⁻¹ x is:	65/4/2 (1m)
	(A) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ (C) $\left[0, \pi\right]$	(B) $\left[\pi, 2\pi\right]$	
	(C) $\left[0,\pi\right]$	(D) $\left[2\pi, 3\pi\right]$	

¹¹ D	Domain of $\sin^{-1}(2x^2-3)$ is:	65/4/3 (1m)
(2	A) $(-1,0) \cup (1,\sqrt{2})$ (B) $(-\sqrt{2},-1) \cup (0,1)$	
	C) $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$ (D) $(-\sqrt{2}, -1) \cup (1, \sqrt{2})$	
12	The principal value of $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is:	65/5/1 65/5/2 65/5/3 (1m)
(A) $-\frac{\pi}{3}$ (B) $-\frac{2\pi}{3}$	
(C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$	
13	Find the domain of the function $f(x) = \cos^{-1}(x^2 - 4)$.	65/5/1 (2m)
14	Find the domain of $\sec^{-1}(2x + 1)$.	65/5/2 (2m)
15	Find the domain of $\sin^{-1}(x^2-3)$.	65/5/3 (2m)
16 T	he following graph is a combination of : Y	65/6/1 (1m)
	$X' \leftarrow \frac{5\pi}{2}$ $-\pi \frac{\pi}{2}$ $-\pi \frac{\pi}{2}$ $-\pi \frac{5\pi}{2}$ $-\pi \frac{5\pi}{2}$ $-\pi \frac{5\pi}{2}$ Y'	
(I		
(0)	$y = \sin^{-1} x \text{ and } y = \sin x$ $y = \cos^{-1} x \text{ and } y = \sin x$	
17	$\left[\sec^{-1}\left(-\sqrt{2}\right) - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right]$ is equal to: A) $\frac{11\pi}{12}$ (B) $\frac{5\pi}{12}$	65/6/1 65/6/2 65/6/3 (1m)
	C) $-\frac{5\pi}{12}$ (D) $\frac{7\pi}{12}$	
18	Find the domain of $f(x) = \sin^{-1}(-x^2)$.	65/6/1 65/6/2 65/6/3 (2m)
Page- [1	5] Copyright-©/2025/Jitu Sharma	

Q.	ANSWERS
1	(C) $\frac{\pi}{2}$
2	
	$\tan^{-1}\left[2\sin\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right]$
	$= \tan^{-1} \left[2 \sin \left(2 \times \frac{\pi}{6} \right) \right] = \tan^{-1} \left[2 \sin \frac{\pi}{3} \right]$
	$= \tan^{-1} \left[2 \times \frac{\sqrt{3}}{2} \right] = \tan^{-1} \sqrt{3} = \frac{\pi}{3}$
3	$\sin^{-1}\left(\sin\frac{3\pi}{5}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{2\pi}{5}\right)\right)$
	$= \sin^{-1}\left(\sin\left(\frac{2\pi}{5}\right)\right)$
	$=\frac{2\pi}{5}$
4	$2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2} \right) = 4\sqrt{3} \implies 2 \tan^{-1} x + 2 \tan^{-1} x = 4\sqrt{3}$
	$\Rightarrow \tan^{-1} x = \sqrt{3} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
	$\therefore \mathbf{x} = \tan\left(\sqrt{3}\right) $ which has no solution.
5	(B) $\left[-\frac{\pi}{2}, 0\right]$
6	(B) $-\frac{\pi}{10}$
7	(A) -1
8	(C) $\frac{\pi}{3}$
9	$Put x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

	$Now sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right)$
	$=\sin^{-1}\left(\frac{\tan\theta}{\sec\theta}\right)=\sin^{-1}(\sin\theta)$
	$=\theta=\tan^{-1}x$
	Here $-1 \le \sqrt{x-1} \le 1$
	$\Rightarrow 0 \le x - 1 \le 1 \Rightarrow 1 \le x \le 2$
	Hence, domain is $x \in [1,2]$
10	(C) $\left[0,\pi\right]$
11	(C) $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$
12	$(D)\frac{2\pi}{3}$
13	Domain of cos ⁻¹ x is [-1, 1]
	$\Rightarrow -1 \leq x^2 - 4 \leq 1 \Rightarrow 3 \leq x^2 \leq 5$
	$\Rightarrow \mathbf{x} \in [-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$
14	
	Domain of sec ⁻¹ x is $(-\infty, -1] \cup [1, \infty)$
	\Rightarrow 2x + 1 \leq -1 or 2x + 1 \geq 1 \Rightarrow x \leq -1 or x \geq 0
	\Rightarrow Domain = $(-\infty, -1] \cup [0, \infty)$
15	Domain of sin-1 x is [-1,1]
	$- \hspace{.1cm} \boldsymbol{1} \hspace{.1cm} \leq \hspace{.1cm} x^2 - 3 \hspace{.1cm} \leq \hspace{.1cm} \boldsymbol{1} \hspace{.1cm} \Rightarrow \hspace{.1cm} 2 \hspace{.1cm} \leq \hspace{.1cm} x^2 \hspace{.1cm} \leq \hspace{.1cm} 4$
	\Rightarrow Domain = $[-2, -\sqrt{2}] \cup [\sqrt{2}, 2]$
16	(C) $y = \sin^{-1}x$ and $y = \sin x$
17	$(D)\frac{7\pi}{12}$
18	$(a) -1 \le -x^2 \le 1 \Longrightarrow -1 \le -x^2 \le 0$
	$\Rightarrow 0 \le x^2 \le 1 \Rightarrow -1 \le x \le 1$
19	(B) $y = \cot^{-1} x$
Page	- [19] Copyright-©/2025/Jitu Sharma

		-
20	$(A) y = \sec^{-1}x$	
21	$(A) y = \tan^{-1} x$	=
22	(C) [-1,1]	
23	(A) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A).	
24	$(\mathbf{D}) \mathbf{y} = \sin^{-1} \mathbf{x}$	
25	(A) sec ⁻¹ x	
26	(A) 3	
27	$tan^{-1}\sqrt{3} - sec^{-1}(-2)$ $= \frac{\pi}{3} - \left[\pi - \frac{\pi}{3}\right]$ $= \frac{-\pi}{3}$	

	CHAPTER 03-MATRICES	
Q.		Code and Marks
1	$\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}$ $\begin{bmatrix} -2 \end{bmatrix}$	65/1/1
	Let $A = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 4 & -1 \\ -3 & 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -2 \\ -5 \\ -7 \end{bmatrix}$, $C = \begin{bmatrix} 9 & 8 & 7 \end{bmatrix}$, which of the following is	1M
	(AT) T (AT) (AT)	
	defined?	
	(A) Only AB (B) Only AC	
2	(C) Only BA (D) All AB, AC and BA	65/1/1
ſ	If $A = \begin{bmatrix} 0 & 7 & 0 \end{bmatrix}$ is a scalar matrix, then y^x is equal to	
	0 0 y	1M
	(A) 0 (C) 7 (D) ± 7	65 /1 /0
3	Let A be a matrix of order $m \times n$ and B is a matrix such that A^TB and BA^T	65/1/2
	are defined. Then, the order of B is:	1 M
	(A) $m \times m$ (B) $n \times n$	
	(C) $m \times n$ (D) $n \times m$	
4	$\begin{bmatrix} r+v & 3v \end{bmatrix} \begin{bmatrix} 9 & 4r+v \end{bmatrix}$	65/1/3
	If $\begin{bmatrix} x+y & 3y \\ 3x & x+3 \end{bmatrix} = \begin{bmatrix} 9 & 4x+y \\ x+6 & y \end{bmatrix}$, then $(x-y) = ?$	1 M
	(A) -7 (B) -3	
	(C) 3 (D) 7	
5	$\begin{bmatrix} 1 & 12 & 4y \end{bmatrix}$	65/2/1
	If $A = \begin{bmatrix} 1 & 12 & 4y \\ 6x & 5 & 2x \\ 8x & 4 & 6 \end{bmatrix}$ is a symmetric matrix, then $(2x + y)$ is	1M
	(A) -8 (B) 0	
	(C) 6 (D) 8	
6	Four friends Abhay, Bina, Chhaya and Devesh were asked to simplify	65/2/1
	$4 \text{ AB} + 3(\text{AB} + \text{BA}) - 4 \text{ BA}$, where A and B are both matrices of order 2×2 .	65/2/2 65/2/3
	It is known that $A \neq B \neq I$ and $A^{-1} \neq B$.	
	Their answers are given as:	1 M
	Abhay: 6 AB	
	Bina : 7 AB – BA	
	Chhaya: 8 AB	
	Devesh: 7 BA – AB	
	Who answered it correctly?	
	100 See 100 Mars	
	(A) Abhay (B) Bina	
	(C) Chhaya (D) Devesh	

7	Which of the following can be both a symmetric and skew-symmetric matrix?	65/2/1 65/2/2
	(A) Unit Matrix (B) Diagonal Matrix	65/2/3 1M
	(C) Null Matrix (D) Row Matrix	1111
8	If A and B are square matrices of order m such that $A^2 - B^2 = (A - B) (A + B)$,	65/2/1
	then which of the following is always correct?	65/2/2 65/2/3
	(A) $A = B$ (B) $AB = BA$	1M
	(C) $A = 0 \text{ or } B = 0$ (D) $A = I \text{ or } B = I$	
9	Assertion (A): A = diag [3 5 2] is a scalar matrix of order 3 × 3.	65/2/1
	Reason (R) : If a diagonal matrix has all non-zero elements equal, it is known as a scalar matrix.	65/2/2 65/2/3 1M
10	Let P be a skew-symmetric matrix of order 3. If $det(P) = \alpha$, then $(2025)^{\alpha}$ is	65/2/2
	(A) 0 (B) 1	1M
	(C) 2025 (D) $(2025)^3$	
11	If A and B are square matrices of same order, then (AB ^T – BA ^T) is a	65/2/3
	(A) symmetric matrix (B) skew-symmetric matrix	1M
	(C) null matrix (D) unit matrix	
12	If A and B are success artists of a successful that AB A and	65/4/1
	If A and B are square matrices of same order such that $AB = A$ and $BA = B$, then $A^2 + B^2$ is equal to:	65/4/2 65/4/3
	$(A) A + B \qquad (B) BA$	1M
	(C) $2(A + B)$ (D) $2BA$	
13	$\begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$	65/4/1 65/4/2
	The matrix $\begin{vmatrix} -1 & 0 & -7 \end{vmatrix}$ is a:	65/4/3
	2 7 0	1M
	(A) diagonal matrix (B) symmetric matrix	
	(C) skew symmetric matrix (D) scalar matrix	
14	If $A = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}$ and $A^2 = kA$, then find the value of k.	65/4/3 2M
	$\begin{bmatrix} -2 & 2 \end{bmatrix}$ and $A = KA$, then find the value of K .	
15	[5 0 0]	65/5/1 65/5/2
	If $A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \end{bmatrix}$, then A^3 is:	65/5/3
	[0 0 5]	1M
	[5 0 0] [125 0 0]	
	(A) 3 0 5 0 (B) 0 125 0	
	$\begin{bmatrix} 0 & 0 & 5 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 125 \end{bmatrix}$	
	$\begin{bmatrix} 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5^3 & 0 & 0 \end{bmatrix}$	
	(C) 0 15 0 (D) 0 5 0	
	$\begin{bmatrix} 0 & 0 & 15 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 5 \end{bmatrix}$	

16	[4 3]	65/5/1
	If $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 3 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ -1 & 2 \\ 0 & 5 \end{bmatrix}$, then the correct statement is:	1 M
	(A) Only AB is defined.	
	(B) Only BA is defined.	
	(C) AB and BA, both are defined. (D) AB and BA, both are not defined.	
17		65/5/1
	If $\begin{bmatrix} 4+x & x-1 \\ -2 & 3 \end{bmatrix}$ is a singular matrix, then the value of x is:	1 M
	(A) 0 (B) 1	
	(C) -2 (D) -4	
18	If A and B are two square matrices of the same order, then	65/5/2
	(A + B) (A - B) is equal to:	1 M
	(A) $A^2 - AB + BA - B^2$ (B) $A^2 + AB - BA - B^2$ (C) $A^2 - AB - BA - B^2$ (D) $A^2 - B^2 + AB + BA$	
	$(C) A - AB - BA - B \qquad (D) A - B + AB + BA$	
19	If a matrix A is both symmetric and skew-symmetric, then A is a:	65/5/2
	(A) diagonal matrix (B) zero matrix	1M
	(C) non-singular matrix (D) scalar matrix	
20	Let A and B be two matrices of suitable orders. Then, which of the following is not correct?	65/5/3 1M
	(A) $(A')' = A$ (B) $(kA)' = kA'$, k is a scalar	
	(C) $(A' + B')' = A + B$ (D) $(AB)' = A'B'$	
21	Let both AB' and B'A be defined for matrices A and B. If order of A is	65/6/1
	$n \times m$, then the order of B is:	65/6/2 65/6/3
	(A) $n \times n$ (B) $n \times m$	1M
	(C) $m \times m$ (D) $m \times n$	
22	-1 0 0	65/6/1
	If $A = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, then A is a/an:	1 M
	[0 0 5]	
	(A) scalar matrix (B) identity matrix	
0.5	(C) symmetric matrix (D) skew-symmetric matrix	
23	Sum of two skew-symmetric matrices of same order is always a/an:	65/6/1 65/6/2
	(A) skew-symmetric matrix	65/6/3
	(B) symmetric matrix	1 M
	(C) null matrix (D) identity matrix	
	(D) identity matrix	

24	con extension was record as some	65/6/1
	Let $A = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 4 & 2 \\ 12 & 16 & 8 \\ 6 & 8 & 4 \end{bmatrix}$ be two matrices. Then, find the	3M
	Let $A = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ and $C = \begin{bmatrix} 12 \\ -6 \\ -8 \\ -4 \end{bmatrix}$ be two matrices. Then, find the	
	matrix B if AB = C.	
25		65/6/2
	If $A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 0 & 5 \\ -8 & -5 & 0 \end{bmatrix}$, then A is a:	1M
	[-8 -5 0]	
	(A) null matrix (B) symmetric matrix	
	(C) skew-symmetric matrix (D) diagonal matrix	
26	$\begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$	65/6/2
	If $A = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 4 \\ 0 & 5 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, are three matrices, then	3M
27	find ABC.	65/6/3
21	$\begin{bmatrix} 0 & 0 & -5 \end{bmatrix}$	03/0/3
	If $A = \begin{bmatrix} 0 & 0 & -5 \\ 0 & 3 & 0 \\ 4 & 3 & 0 & 0 \end{bmatrix}$, then A is a:	1M
	[4·3 0 0]	
	(A) skew-symmetric matrix (B) scalar matrix	
00	(C) diagonal matrix (D) square matrix	65.16.12
28	$\begin{bmatrix} 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	65/6/3
	Find the value of x, if $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$.	3M
29	What is the total number of possible matrices of order 3 × 3 with each	65/7/1 65/7/2
	entry as $\sqrt{2}$ or $\sqrt{3}$?	65/7/3
	(A) 9 (B) 512 (C) 615 (D) 64	1M
	(D) 04	
30		65/7/1
	The matrix $A = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$ is a/an:	65/7/2 65/7/3
	The matrix $A = \begin{bmatrix} 0 & \sqrt{2} & 0 \end{bmatrix}$ is a/an:	1M
	$0 0 \sqrt{5}$	
	9000 N	
	(A) scalar matrix (B) identity matrix	
	(C) null matrix (D) symmetric matrix	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	If $\begin{bmatrix} 2x-1 & 3x \\ 0 & y^2-1 \end{bmatrix} = \begin{bmatrix} x+3 & 12 \\ 0 & 35 \end{bmatrix}$, then the value of $(x-y)$	is: 65/7/1 65/7/2 65/7/3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(A) 2 or 10 (B) 2 or 10	
32 If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, then show that $A^2 - 4A + 7I = 0$. 65/7/1 33 OR 65/7/1 A shopkeeper sells 50 Chemistry, 60 Physics and 35 Maths books on day II. If the selling price for each such subject book is ₹ 150 (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? 65/7/2 34 If $\begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & -3 \end{bmatrix}A = \begin{bmatrix} 2 \\ -5 \\ -17 \end{bmatrix}$, then find matrix A. 65/7/2 35 If $A = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}$, then find the value of K if $A^2 = 6A + KI_2$, where I_2 is an identity matrix. 65/7/3 36 If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (C) 6 (D) 2 65(B) 12 (C) 6 (D) 2 37 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is : (A) 3×2 (B) 2×2 65(B) 2×2		TO THE REPORT OF THE PROPERTY	
If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, then show that $A^2 - 4A + 7I = 0$. OR A shopkeeper sells 50 Chemistry, 60 Physics and 35 Maths books on day I and sells 40 Chemistry, 45 Physics and 50 Maths books on day II. If the selling price for each such subject book is ₹ 150 (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $\begin{bmatrix} 3 & -1 \\ 2 & -3 \end{bmatrix} A = \begin{bmatrix} 2 \\ -5 \\ -17 \end{bmatrix}, \text{ then find matrix A.}$ $\begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}, \text{ then find the value of K if } A^2 = 6A + KI_2, \text{ where } I_2 \text{ is an identity matrix.}}$ If $A = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}$, then find the value of K if $A^2 = 6A + KI_2$, where I_2 is an identity matrix. $\begin{bmatrix} 36 & 1 \\ 3 & 1 \end{bmatrix} A = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 5 \end{bmatrix}, \text{ then find the value of K if } A^2 = 6A + KI_2, \text{ where } I_2 \text{ is an identity matrix.}}$ $\begin{bmatrix} 65/7/3 \\ 2M \end{bmatrix}$ If $A = \begin{bmatrix} 1 & 0 \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (D) 2 $\begin{bmatrix} 37 & 1 \\ 4 & 3 & 2 \end{bmatrix} A = \begin{bmatrix} 31 & 42 \\ 75 & 364 \\ 75 & 86 \end{bmatrix}, \text{ then the order of B is :}$ If $A = \begin{bmatrix} 2 & 3 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is :		(C) $2 \text{ or} - 10$ (D) $-2 \text{ or} - 10$	
A shopkeeper sells 50 Chemistry, 60 Physics and 35 Maths books on day I and sells 40 Chemistry, 45 Physics and 50 Maths books on day II. If the selling price for each such subject book is ₹ 150 (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $ \begin{array}{cccccccccccccccccccccccccccccccccc$	32	If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, then show that $A^2 - 4A + 7I = 0$.	
A shopkeeper sells 50 Chemistry, 60 Physics and 35 Maths books on day I and sells 40 Chemistry, 45 Physics and 50 Maths books on day II. If the selling price for each such subject book is ₹ 150 (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $ \begin{array}{cccccccccccccccccccccccccccccccccc$	33	OR	
on day I and sells 40 Chemistry, 45 Physics and 50 Maths books on day II. If the selling price for each such subject book is ₹ 150 (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $ \begin{array}{cccccccccccccccccccccccccccccccccc$		A sharksoner calls 50 Chamisters 60 Physics and 25 Matha backs	
$ \begin{array}{c} \text{day II. If the selling price for each such subject book is ₹ 150} \\ (Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $		Control (1984 - 1987) → 10 (1984) (1	ЗМ
(Chemistry), ₹ 175 (Physics) and ₹ 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is ₹ 35,000, what profit did he earn after the sale of two days? $ \begin{array}{cccccccccccccccccccccccccccccccccc$		- 기업도 사이트를 가는 이 사이트를 보고 있으면 하는 이 아니라 가는 것을 보고 있다면 하는 사이트를 보고 있다면 하는 사이트를 보고 있다면 되었다. 그런 이 전에 가는 사이트를 보고 있다면 보고 있다면 되었다.	
sale in two days, using matrix method. If cost price of all the books together is \mp 35,000, what profit did he earn after the sale of two days? $ \begin{array}{cccccccccccccccccccccccccccccccccc$		- [2](그래드 - "^^())를 통하기 (^ 2)(이 보면 () 기업 () () () () () () () () () () () () ()	
together is \mp 35,000, what profit did he earn after the sale of two days? If $\begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & -3 \end{bmatrix} A = \begin{bmatrix} 2 \\ -5 \\ -17 \end{bmatrix}$, then find matrix A. If $A = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}$, then find the value of K if $A^2 = 6A + KI_2$, where I_2 is an identity matrix. If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (C) 6 (D) 2 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2		2000년 이번에 가게 되면 하게 되었다. "보니 1000년 전에 제외하다 개요하다 되었다"는 그는	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		together is ₹ 35,000, what profit did he earn after the sale of two	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		65/7/2
35 If $A = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}$, then find the value of K if $A^2 = 6A + KI_2$, where I_2 is an identity matrix. 36 If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (C) 6 (D) 2 37 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2		3 -1 2	
identity matrix. 36 If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (C) 6 (B) 12 (D) 2 37 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2		[]	
If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (C) 6 (D) 2 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2	35		65/7/3 2M
If $A = \begin{bmatrix} x & 0 & m \\ y & z & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$, where I is a unit matrix, then $x + y + z + m$ is equal to (A) 18 (B) 12 (C) 6 (D) 2 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2	36	Service could recome	65(B)
(A) 18 (B) 12 (D) 2			
(C) 6 (D) 2 If $B = \begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is : (A) 3×2 (B) 2×2		The state of the s	
37 If B = [23 41 57] $\begin{bmatrix} 31 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is: (A) 3×2 (B) 2×2		20070 AGE 1	
If B = $\begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 51 & 42 \\ 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is : (A) 3×2 (B) 2×2		(6) 2	
[75 86] (A) 3 × 2 (B) 2 × 2	37		65(B)
		If B = $\begin{bmatrix} 23 & 41 & 57 \end{bmatrix} \begin{bmatrix} 53 & 64 \\ 75 & 86 \end{bmatrix}$, then the order of B is:	1 M
(C) 1×3 (D) 1×2		(A) 3 × 2 (B) 2 × 2	
Western 19		(C) 1×3 (D) 1×2	

38	If A and B are square matrices of the same order, then $(A - B)^2 = ?$	65(B)
	(A) $A^2 - 2AB + B^2$ (B) $A^2 - AB - BA + B^2$	1M
	(C) $A^2 - 2BA + B^2$ (D) $A^2 - AB + BA + B^2$	
	ANSWERS	
1	(A) Only AB	
2	(B) 1	
3	(C) m × n	
4	(B) −3	
5	(D) 8	
6	(B) Bina	
7	(C) Null Matrix	
8	(B) AB = BA	
9	(D) Assertion (A) is false and Reason (R) is true.	
10	(B) 1	
11	(B) skew-symmetric	
12	(A) A + B	
13	(C) skew symmetric matrix	
14	$A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$	
	$A^{2} = kA \Rightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = \begin{bmatrix} 2k & -2k \\ -2k & 2k \end{bmatrix}$	
15	$\Rightarrow k=4$	
	(B) 0 125 0 0 0 0 0 0 125 0 0 0 0 125	
16	(C) AB and BA, both are defined.	
17	(C) -2	
18	$(A) A^2 - AB + BA - B^2$	
19	(B) zero matrix	
20	$(\mathbf{D}) (\mathbf{A}\mathbf{B})' = \mathbf{A}' \mathbf{B}'$	
Page	- [26] Copyright-©/2025/Jitu Sharma	

21	(B) n × m
22	(C) symmetric matrix
23	(A) skew-symmetric matrix
24	(a) Let B = [x y z] $AB = C \implies \begin{bmatrix} x & y & z \\ 4x & 4y & 4z \\ -2x & -2y & -2z \end{bmatrix} = \begin{bmatrix} 3 & 4 & 2 \\ 12 & 16 & 8 \\ -6 & -8 & -4 \end{bmatrix}$ which gives x = 3, y = 4 and z = 2 B = [3 4 2]
25	(C) skew-symmetric matrix
0.6	
26	Required product = $[2+1+0 0-3+0 1-4+0]$ $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$
	$= \begin{bmatrix} 3 - 3 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$
	= [- 15]
27	(D) square matrix
28	$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$
	$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 7 + 2x \\ 12 + x \\ 21 + 2x \end{bmatrix} = 0$ $x^{2} + 16x + 28 = 0$
	$\Rightarrow (x+14)(x+2)=0$
	$\Rightarrow x = -14, x = -2$
29	(B) 512
30	(D) symmetric matrix
31	(B)- 2 or 10
32	$A^{2} = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix}.$
	L.H.S.= $A^2 - 4A + 7I = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O = R.H.S.$

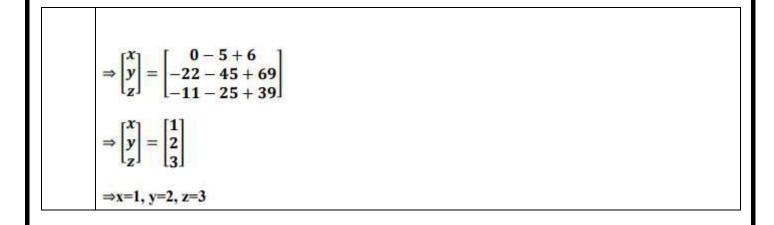
33	Let $A = \begin{bmatrix} 50 & 60 & 35 \\ 40 & 45 & 50 \end{bmatrix} \frac{Day I}{Day II}$, $B = \begin{bmatrix} 150 \\ 175 \\ 180 \end{bmatrix}$ be the day wise sale and the selling price per subject, matrices respectively. Total sales day wise $= \begin{bmatrix} 50 & 60 & 35 \\ 40 & 45 & 50 \end{bmatrix} \begin{bmatrix} 150 \\ 175 \\ 180 \end{bmatrix} = \begin{bmatrix} 24,300 \\ 22,875 \end{bmatrix} \frac{Day I}{Day II}$
	Total sales in two days = ₹ 24,300 + ₹ 22,875 = ₹ 47,175
	Profit = ₹ $47,175 - ₹ 35,000 = ₹ 12,175$.
34	Let $A = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -17 \end{bmatrix}$
	\Rightarrow 3x - y = 2, y = -5 and
	$\Rightarrow x = -1$
	Put the values in $2x-3y=-17$, L.H.S. = $2(-1)-3(-5)\neq -17$ = R.H.S. \therefore The matrix 'A' does not exist.
35	$A^{2} = 6A + KI_{2} \Rightarrow \begin{bmatrix} 1 & 0 \\ -6 & 25 \end{bmatrix} = \begin{bmatrix} 6+K & 0 \\ -6 & 30+K \end{bmatrix}$
	\Rightarrow 6+K=1 \Rightarrow K=-5, also satisfies 30+K=25.
36	(B) 12
37	(D) 1×2
38	$(B) A^2 - AB - BA + B^2$

	CHAPTER 4 DETERMINANTS	
Q.		Code and Marks
1	If $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then A^{-1} is	65/1/1 65/1/2 65/1/3
	(A) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	1M
2	If A is a square matrix of order 2 such that det (A) = 4, then det (4 adj A) is equal to: (A) 16 (B) 64 (C) 256 (D) 512	65/1/1 1M
3	If A and B are invertible matrices, then which of the following is not correct? (A) $(A + B)^{-1} = B^{-1} + A^{-1}$ (B) $(AB)^{-1} = B^{-1}A^{-1}$ (C) adj $(A) = A A^{-1}$ (D) $ A ^{-1} = A^{-1} $	65/1/1 65/1/2 65/1/3
4	A school wants to allocate students into three clubs: Sports, Music and Drama, under following conditions: • The number of students in Sports club should be equal to the sum of the number of students in Music and Drama club. • The number of students in Music club should be 20 more than half the number of students in Sports club. • The total number of students to be allocated in all three clubs are 180. Find the number of students allocated to different clubs, using matrix method.	1M 65/1/1 65/1/2 65/1/3 5M
5	If A is a square matrix of order 3 such that $det(A) = 9$, then $det(9 A^{-1})$ is equal to	65/1/2 1M
	(A) 9 (B) 9 ²	
	(C) 9^3 (D) 9^4	
6	A system of linear equations is represented as $AX = B$, where A is coefficient matrix, X is variable matrix and B is the constant matrix. Then the system of equations is (A) Consistent, if $ A \neq 0$, solution is given by $X = BA^{-1}$. (B) Inconsistent if $ A = 0$ and (adj A) $B = 0$ (C) Inconsistent if $ A \neq 0$	65/1/3 1M

(a) Given $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find AB. Hence, solve	65/2/1 65/2/2 65/2/3 5M
the system of linear equations: $x - y + z = 4$ $x - 2y - 2z = 9$ $2x + y + 3z = 1$ OR (b) If $A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$, then find A^{-1} . Hence, solve the system of linear equations: $x - 2y = 10$ $2x - y - z = 8$	
8 If M and N are square matrices of order 3 such that det (M) = m and MN = mI, then det (N) is equal to:	65/4/1 1M
(A) -1 (B) 1 (C) $-m^2$ (D) m^2	
Let A and B be two square matrices of order 3 such that det (A) = 3 and det (B) = -4. Find the value of det (-6AB).	65/4/1 2M
If A is a 3 × 3 invertible matrix, show that for any scalar $k \neq 0$, $(kA)^{-1} = \frac{1}{k}A^{-1}$. Hence calculate $(3A)^{-1}$, where	65/4/1 65/4/2 65/4/3
$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$	5M
If $\begin{vmatrix} -1 & 2 & 4 \\ 1 & x & 1 \\ 0 & 3 & 3x \end{vmatrix} = -57$, the product of the possible values of x is:	65/4/2 1M
(A) -24 (B) -16 (C) 16 (D) 24	
Using matrices and determinants, find the value(s) of k for which the	65/4/2
pair of equations $5x - ky = 2$; $7x - 5y = 3$ has a unique solution.	2M

13	If A and B are invertible matrices of order 3×3 such that det (A) = 4 and	65/4/3
	det $[(AB)^{-1}] = \frac{1}{20}$, then det (B) is equal to :	1M
	20	
	(A) $\frac{1}{20}$ (B) $\frac{1}{5}$	
	(C) 20 (D) 5	
14	If $\begin{vmatrix} 2x & 5 \\ 12 & x \end{vmatrix} = \begin{vmatrix} 6 & -5 \\ 4 & 3 \end{vmatrix}$, then the value of x is:	65/5/1 65/5/2 65/5/3
	(A) 3 (B) 7	1M
	(C) ± 7 (D) ± 3	
15	If $A = [a_{ij}]$ is a 3 × 3 diagonal matrix such that $a_{11} = 1$, $a_{22} = 5$ and $a_{33} = -2$, then $ A $ is:	65/5/1 65/5/2 65/5/3
	(A) 0 (B) -10	1M
	(C) 10 (D) 1	
16	A furniture workshop produces three types of furniture – chairs, tables	65/5/1
	and beds each day. On a particular day the total number of furniture	5M
	pieces produced is 45. It was also found that production of beds exceeds	SIVI
	that of chairs by 8, while the total production of beds and chairs together is twice the production of tables. Determine the units produced of each	
	type of furniture, using matrix method.	
17		65/5/2
	An amount of ₹ 10,000 is put into three investments at the rate of 10%, 12% and 15% per annum. The combined annual income of all three	
	investments is ₹ 1,310, however the combined annual income of the first	5M
	and the second investments is ₹ 190 short of the income from the third.	
	Use matrix method and find the investment amount in each at the	
	beginning of the year.	
18		65/5/3
	Let A and B be two matrices of suitable orders. Then, which of the following is not correct?	1M
	(A) $(A')' = A$ (B) $(kA)' = kA', k \text{ is a scalar}$	
	(C) $(A' + B')' = A + B$ (D) $(AB)' = A'B'$	
19	Three students run on a reging treet such that their encode add up to	65/5/3
	Three students run on a racing track such that their speeds add up to	5M
	6 km/h. However, double the speed of the third runner added to the speed	
	of the first results in 7 km/h. If thrice the speed of the first runner is	
	added to the original speeds of the other two, the result is 12 km/h. Using	
	matrix method, find the original speed of each runner.	

	stationery items. Neha buys 4 p	and Sam go to a market to purchase pens, 3 notepads and 2 erasers and pays ads and 6 erasers for ₹ 90. Sam pays ₹ 70 pers.	65/6/1 65/6/2 65/6/3
	Based upon the above information	n, answer the following questions :	
		ired to solve the problem of finding the press it in the matrix form $AX = B$.	
	(ii) Find A and confirm if it	is possible to find A^{-1} .	
	(iii) (a) Find A ⁻¹ , if possible, OR	and write the formula to find X.	
	(iii) (b) Find $A^2 - 8I$, where I	is an identity matrix.	
21	If A and B are two square B = 5, then 2AB is:	matrices each of order 3 with $ A = 3$ and	65/7/1 65/7/2 65/7/3
	(A) 30	(B) 120	1M
	(C) 15	(D) 225	
22	(a) Let $2x + 5y - 1 = 0$ an	and $3x + 2y - 7 = 0$ represent the equations of	65/7/1
		he ants are moving on the ground. Using	65/7/2 65/7/3
		point common to the paths of the ants.	3M
23	Let A be a square matrix	of order 3. If A = 5, then adj A is:	65/7/2 65/7/3
23	Let A be a square matrix (A) 5	of order 3. If A = 5, then adj A is: (B) 125	65/7/3
23	The Control of the Co		
	(A) 5	(B) 125	65/7/3 1M 65(B)
	(A) 5 (C) 25	(B) 125 (D) -5	65/7/3 1M
	(A) 5 (C) 25	(B) 125 (D) -5	65/7/3 1M 65(B)
	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \end{vmatrix} = 0$, then the	(B) 125 (D) -5	65/7/3 1M 65(B)
	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the	(B) 125 (D) -5	65/7/3 1M 65(B)
24	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the (A) 0 (C) -6	(B) 125 (D) -5 e value of x is (B) 9 (D) 6	65/7/3 1M 65(B)
24	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the second (A) 0 (C) -6 If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find	(B) 125 (D) -5	65/7/3 1M 65(B) 1M
24	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the second of	(B) 125 (D) -5 e value of x is (B) 9 (D) 6	65/7/3 1M 65(B) 1M
24	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the second of	(B) 125 (D) -5 e value of x is (B) 9 (D) 6	65/7/3 1M 65(B) 1M
24	(A) 5 (C) 25 If $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the second of	(B) 125 (D) -5 e value of x is (B) 9 (D) 6	65/7/3 1M 65(B) 1M


	ANSWERS
1	(D) $ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
2	(B) 64
3	(A) $(A + B)^{-1} = B^{-1} + A^{-1}$
4	Let x, y and z be the no. of students allocated to Sports, Music and Drama clubs respectively.
	Here, $x = y + z$, $y = \frac{x}{2} + 20$, $x + y + z = 180$
	$\Rightarrow x - y - z = 0, x - 2y = -40, x + y + z = 180$ Given equations can be written as $AX = B$
	where, $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -2 & 0 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ -40 \\ 180 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
	$ A = -4 \neq 0 \Rightarrow A^{-1} \text{ exists.}$ $adjA = \begin{bmatrix} -2 & 0 & -2 \\ -1 & 2 & -1 \\ 3 & -2 & -1 \end{bmatrix}$
	$A^{-1} = \frac{1}{ A } \times adj A = \frac{1}{4} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -2 & 1 \\ -3 & 2 & 1 \end{bmatrix}$
	$X = A^{-1}B$ =\frac{1}{4} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -2 & 1 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -40 \\ 180 \end{bmatrix} = \begin{bmatrix} 90 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 90 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2.5 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
5	(B) 9 ²
6	(D) May or may not be consistent if A = 0 and (adj A) B = 0
7	$AB = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = 8I$
	Γhe system of equations is equivalent to the matrix equation:
	$BX = C$, where $C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
	$\Rightarrow X = B^{-1}C$
	4B = 8I
	$4B = 8I$ $\Rightarrow B^{-1} = \frac{1}{8}A$

	$AB = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 9 \end{bmatrix} = 8I$
	10 0 8J The system of equations is equivalent to the matrix equation:
	$BX = C$, where $C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
	$\Rightarrow X = B^{-1}C$
	AB = 8I
	$\Rightarrow B^{-1} = \frac{1}{8}A$
	$X = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$
	x = 3, y = -2, z = -1
	OR
	$A^{-1} = \frac{1}{ A } adj A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$
	The given system of equations is equivalent to the matrix equation
	$A^T X = B$, where $B = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
	$\Rightarrow X = (A^T)^{-1}B$
	$\Rightarrow X = (A^{-1})^T B$
	$\Rightarrow X = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix}$
	x = 0, y = -5, z = -3
8	(D) m ²
9	$ -6AB = (-6)^3 A B $
	$=-216\times3\times(-4)=2592$
10	Consider (kA) $\left(\frac{1}{k}A^{-1}\right) = k \cdot \frac{1}{k}(A \cdot A^{-1}) = 1 \cdot I = I$
	$\Rightarrow kA \text{ and } \frac{1}{k} A^{-1}$ are inverse of each other.
	$\therefore (kA)^{-1} = \frac{1}{k}A^{-1}$
	$(3A)^{-1} = \frac{1}{3}A^{-1}$

	Here, $ A = 4 \neq 0$: A^{-1} exists.		
	$adjA = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$		
	$adjA = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$		
	$\therefore A^{-1} = \frac{1}{ A } adj A = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$		
	$\therefore (3A)^{-1} = \frac{1}{12} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$		
11	(A) -24		
12	For unique solution, $\begin{vmatrix} 5 & -k \\ 7 & -5 \end{vmatrix} \neq 0$		
	$\Rightarrow -25 + 7k \neq 0 \Rightarrow k \neq \frac{25}{7} \text{ or } R - \left\{ \frac{25}{7} \right\}$		
13	(D) 5		
14	(C) ±7		
15 16	(B) -10 Let the numbers of chairs, tables and bade produced by y and z respectively.		
	Let the numbers of chairs, tables and beds produced be x, y and z respectively. $x + y + z = 45$: $-x + 0$ $y + z = 8$: $x - 2y + z = 0$		
	$\therefore x + y + z = 45; -x + 0. y + z = 8; x - 2y + z = 0$		
	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 45 \\ 8 \\ 0 \end{bmatrix}$		
	$ A = 1(0+2) - 1(-1-1) + 1(2-0) = 6 \neq 0$		
	∴ A ⁻¹ exists		
	$AX = B \Longrightarrow X = A^{-1}B$		
	$adj(A) = \begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -2 \\ 2 & 3 & 1 \end{bmatrix}$		
	$A^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -2 \\ 2 & 3 & 1 \end{bmatrix}$		
	So, $x = 11$, $y = 15$, $z = 19$		
	Hence the numbers of chairs, tables and beds produced are 11, 15 and 19		
	respectively.		

17	Let x, y and z (in ₹) be three investment amounts.
	Then $x + y + z = 10,000$
	$\frac{10}{100}x + \frac{12}{100}y + \frac{15}{100}z = 1310$
	$-\frac{10}{100}x-\frac{12}{100}y+\frac{15}{100}z=190$
	Let A = $\begin{bmatrix} 1 & 1 & 1 \\ 10 & 12 & 15 \\ -10 & -12 & 15 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 10,000 \\ 1,31,000 \\ 19,000 \end{bmatrix}$
	$ \mathbf{A} = 60 \neq 0$
	∴ A ⁻¹ exists
	$AX = B \Longrightarrow X = A^{-1}B$
	$adj(A) = \begin{bmatrix} 360 & -27 & 3 \\ -300 & 25 & -5 \\ 0 & 2 & 2 \end{bmatrix}$
	$\mathbf{A}^{-1} = \frac{1}{60} \begin{bmatrix} 360 & -27 & 3\\ -300 & 25 & -5\\ 0 & 2 & 2 \end{bmatrix}$
	Hence the investments are ₹ 2000, ₹ 3000 and ₹ 5000 respectively.
18	$(\mathbf{D}) (\mathbf{A}\mathbf{B})' = \mathbf{A}' \mathbf{B}'$
19	Let original speed of three runners be x, y and z respectively.
	Then $x + y + z = 6$; $x + 2z = 7$; $3x + y + z = 12$
	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 7 \\ 12 \end{bmatrix}$
	$ A = 4 \neq 0 \implies A^{-1}$ exists
	$AX = B \Longrightarrow X = A^{-1}B$
	$adj(A) = \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$
	$A^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$

	Hence the original speed of three runners are 3km/h, 1km/h and 2 km/h				
	respectively.				
20	(i)Let the price of each pen, notepad, eraser be $\{x, \{y \text{ and } \{z \text{ respectively}\}\}\$ Given system in the form AX = B is $\begin{pmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 60 \\ 90 \\ 70 \end{pmatrix}$				
	(ii) $ A = 50 \neq 0$, hence A^{-1} exists				
	(iii) (a) $A^{-1} = \frac{adjA}{ A } = \frac{1}{50} \begin{pmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{pmatrix}$				
	$X = A^{-1}B$				
	(iii)(b) $A^2 = \begin{pmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 34 & 28 & 32 \\ 52 & 34 & 46 \\ 46 & 32 & 33 \end{pmatrix}$ $A^2 - 8I = \begin{pmatrix} 26 & 28 & 32 \\ 52 & 26 & 46 \\ 46 & 32 & 25 \end{pmatrix}$				
21	(B) 120				
22	(a) The system of equations in matrices is:				
	$AX = B$, where $A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$				
	The solution is given by $X = A^{-1}B \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{-1}{11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$				
	Point common to paths of the ants is $(3,-1)$.				
23	(C) 25				
24	(C) -6				
25	$adjA = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$				
	$ A = 2 \times 0 - 3 \times 2 + 5 \times 1 = -6 + 5 = -1 \neq 0 \Rightarrow A^{-1}$ exists				
	$A^{-1} = \frac{1}{ A }(adjA) = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$				
	$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $AX = B \Rightarrow X = A^{-1}B$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ 1 & 5 & 12 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ 2 \end{bmatrix}$				
	$AX = B \Rightarrow X = A^{-1}B$ $\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$				
	<u> </u>				

	CHAPTER 5 CONTINUITY AND DIFFERENTIABILITY		
Q.		Code and Marks	
1	If $f(x) = x + x-1 $, then which of the following is correct? (A) $f(x)$ is both continuous and differentiable, at $x = 0$ and $x = 1$. (B) $f(x)$ is differentiable but not continuous, at $x = 0$ and $x = 1$. (C) $f(x)$ is continuous but not differentiable, at $x = 0$ and $x = 1$. (D) $f(x)$ is neither continuous nor differentiable, at $x = 0$ and $x = 1$.	1 mark 65/1/1	
2	Assertion (A): $f(x) = \begin{cases} 3x - 8, & x \le 5 \\ 2k, & x > 5 \end{cases}$ is continuous at $x = 5$ for $k = \frac{5}{2}$. Reason (R): For a function f to be continuous at $x = a$, $\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a).$	1 mark 65/1/1	
3	(a) Differentiate $2^{\cos^2 x}$ w.r.t $\cos^2 x$.	2 mark 65/1/2	
4	(b) If $\tan^{-1}(x^2 + y^2) = a^2$, then find $\frac{dy}{dx}$. (a) Differentiate $\tan^{-1}\frac{\sqrt{1-x^2}}{x}$ w.r.t. $\cos^{-1}(2x\sqrt{1-x^2})$, $x \in \left(\frac{1}{\sqrt{2}},1\right)$	5 mark 65/1/2	
	OR (b) Find $\frac{dy}{dx}$, if $y = x^{\tan x} + \frac{\sqrt{x^2 + 1}}{2}$.		
5	(a) If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.	5 mark 65/1/3	
	(b) If $x = a \left(\cos \theta + \log \tan \frac{\theta}{2} \right)$ and $y = \sin \theta$, then find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{4}$.		
6	If A denotes the set of continuous functions and B denotes set of differentiable functions, then which of the following depicts the correct relation between set A and B? (A) (B) (B) (B)	1 mark 65/2/2 65/2/2 65/2/3	

	(C) AB (D) AB	
7	(a) If $x = e^{\frac{x}{y}}$, then prove that $\frac{dy}{dx} = \frac{x - y}{x \log x}$.	2 marks 65/2/1
	OR	2 mark
	(b) If $f(x) = \begin{cases} 2x - 3, -3 \le x \le -2 \\ x + 1, -2 < x \le 0 \end{cases}$	65/2/2 65/2/3
	Check the differentiability of $f(x)$ at $x = -2$.	
8	(a) If $y = \log \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2$, then show that $x(x+1)^2 y_2 + (x+1)^2 y_1 = 2$.	3 mark
	OR	65/2/1 65/2/2 65/2/3
	(b) If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, $-1 < x < 1$, $x \ne y$, then prove that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$.	
9	(a) Find k so that	3 mark
	$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x + 1}, & x \neq -1 \\ k, & x = -1 \end{cases}$	65/4/1 65/4/3
	is continuous at $x = -1$.	
	OR	
	(b) Check the differentiability of function $f(x) = x x at x = 0$.	
10		1 mark
	If $f(x) = \begin{cases} 3x - 2, & 0 < x \le 1 \\ 2x^2 + ax, & 1 < x < 2 \end{cases}$ is continuous for $x \in (0, 2)$, then a is equal	65/4/1
	to;	65/4/2 65/4/3
	(A) -4 (B) $-\frac{7}{2}$	
	(C) -2 (D) -1	

11	The function f defined by	1 mark
	The function f defined by	65/4/1
	$(x, if x \leq 1)$	65/4/3
	$f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$	
	is not continuous at :	
	(A) $x = 0$ (B) $x = 1$	
	(C) $x = 2$ (D) $x = 5$	
12	$1-\sin^3 x$ π	1 mark
	$\frac{1}{3\cos^2 x}$, for $x \neq \frac{1}{2}$	65/4/2
	If $f(x) = \begin{cases} 0 \cos x \end{cases}$	
	If $f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & \text{for } x \neq \frac{\pi}{2} \\ k, & \text{for } x = \frac{\pi}{2} \end{cases}$	
	is continuous at $x = \frac{\pi}{2}$, then the value of k is :	
	(A) $\frac{3}{2}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 1	
	(C) $\frac{1}{2}$ (D) 1	
13	If $y = \log_{2x}(\sqrt{2x})$, then $\frac{dy}{dx}$ is equal to:	1 mark
	$\frac{1}{dx} = \log_{2x} (\sqrt{2\pi}), \text{ then } \frac{1}{dx} = 0$	65/4/3
	(A) 0 (B) 1	
	(A) 0 (B) 1 (C) $\frac{1}{x}$ (D) $\frac{1}{\sqrt{2x}}$	
14	If $f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$	1 mark
	If $f(x) = \begin{cases} x^2, & x \neq 0 \end{cases}$	65/5/1
	190	65/5/2
	is continuous at $x = 0$, then the value of a is: (A) 1 (B) -1	65/5/3
	(A) 1 (B) -1 (C) ±1 (D) 0	
	(D) U	

15	If $f(x) = \{[x], x \in R\}$ is the greatest integer function, then the correct	1 mark
	statement is:	65/5/1
	(A) f is continuous but not differentiable at x = 2.	65/5/0
	 (B) f is neither continuous nor differentiable at x = 2. (C) f is continuous as well as differentiable at x = 2. 	65/5/2
	(C) It is continuous as well as differentiable at x = 2.(D) If is not continuous but differentiable at x = 2.	65/5/3
16		2
	(a) Differentiate $\frac{\sin x}{\sqrt{\cos x}}$ with respect to x.	marks
	√cos x	65/5/1
		65/5/2
	OR	65/5/3
	(b) If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.	
17	$t+\frac{1}{t}$	5 marks
	(a) For a positive constant 'a', differentiate $a^{t+\frac{1}{t}}$ with respect to	marks
	$\left(t+\frac{1}{t}\right)^a$, where t is a non-zero real number.	65/5/1 65/5/2
	(t)	65/5/3
	OR	
	(b) Find $\frac{dy}{dx}$ if $y^x + x^y + x^x = a^b$, where a and b are constants.	
18	If $f(x) = \begin{cases} \frac{\log(1+ax) + \log(1-bx)}{x}, & \text{for } x \neq 0 \end{cases}$	1 mark 65/6/1
	k , for x = 0	65/6/2
	is continuous at x = 0, then the value of k is:	65/6/3
	(A) a (B) a+b (C) a-b (D) b	
19	Strike St	1 mark
	If $\tan^{-1}(x^2 - y^2) = a$, where 'a' is a constant, then $\frac{dy}{dx}$ is:	65/6/1
	(A) $\frac{x}{}$ (B) $-\frac{x}{}$	65/6/2
	у	
	(C) $\frac{\mathbf{a}}{\mathbf{r}}$	65/6/3
20	If $y = a \cos(\log x) + b \sin(\log x)$, then $x^2y_2 + xy_1$ is:	1 mark
		65/6/1
	(A) cot (log x) (B) y	65/6/2
	(C) $-y$ (D) $\tan(\log x)$	65/6/3
21	Let $f(x) = x , x \in R$. Then, which of the following statements is	1 mark
	incorrect?	65/6/1
	(A) f has a minimum value at $x = 0$.	
	(B) f has no maximum value in R.	
	(C) f is continuous at $x = 0$.	
	(D) f is differentiable at x = 0.	
	, and a minor out the second s	

22	Assertion (A): Let $f(x) = e^x$ and $g(x) = \log x$. Then $(f + g) x = e^x$	1 mark 65/6/1
,	where domain of $(f + g)$ is R.	65/6/2
	$P_{coron}(P)$. $P_{coro}(f+g) = P_{coro}(f) \cap P_{coro}(g)$	65/6/3
23	Reason (R): $Dom(f + g) = Dom(f) \cap Dom(g)$. (a) Differentiate $\sqrt{e^{\sqrt{2x}}}$ with respect to $e^{\sqrt{2x}}$ for $x > 0$.	2mark
	(a) Differentiate $\sqrt{e^{\sqrt{2}x}}$ with respect to $e^{\sqrt{2}x}$ for $x > 0$.	65/6/1 65/6/2
,	OR	65/6/3
	(b) If $(x)^y = (y)^x$, then find $\frac{dy}{dx}$.	
24	(a) Differentiate $y = \sin^{-1}(3x - 4x^3)$ w.r.t. x , if $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.	3 mark 65/6/1
	OR	65/6/2
	(b) Differentiate $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to x, when $x \in (0, 1)$.	
25	Let $f(x) = x^2$, $x \in R$. Then, which of the following statements is incorrect?	1 mark 65/6/2
	(A) Minimum value of f does not exist.	
	(B) There is no point of maximum value of f in R.	
	(C) f is continuous at $x = 0$.	
	(D) f is differentiable at $x = 0$.	
26	1, if x ≤ 3	1 mark
	If $f(x) = \begin{cases} ax + b, & \text{if } 3 < x < 5 \text{ is continuous in } R, \text{ then the values of } \\ 7, & \text{if } 5 \le x \end{cases}$	65/7/1
	a and b are :	
	(A) $a = 3, b = -8$ (B) $a = 3, b = 8$	
	(C) $a = -3$, $b = -8$ (D) $a = -3$, $b = 8$	
27	If $f(x) = -2x^8$, then the correct statement is:	1 mark 65/7/1
	(A) $f'\left(\frac{1}{2}\right) = f'\left(-\frac{1}{2}\right)$ (B) $f'\left(\frac{1}{2}\right) = -f'\left(-\frac{1}{2}\right)$	65/7/2
	(C) $-f'\left(\frac{1}{2}\right) = f\left(-\frac{1}{2}\right)$ (D) $f\left(\frac{1}{2}\right) = -f\left(-\frac{1}{2}\right)$	65/7/3
28	Assertion (A): $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous at $x = 0$.	1 mark 65/7/1
	(0 , x = 0	65/7/2
	Reason (R): When $x \to 0$, $\sin \frac{1}{x}$ is a finite value between -1 and 1.	65/7/3
29	(a) Differentiate $\left(\frac{5^x}{x^5}\right)$ with respect to x.	2 mark 65/7/1 65/7/2 65/7/3
	OR	05/1/0
	(b) If $-2x^2 - 5xy + y^3 = 76$, then find $\frac{dy}{dx}$.	
Page-	[43] Copyright-©/2025/Jitu Sharma	

Page- [43]

Copyright-©/2025/Jitu Sharma

30	Differentiate $y = \sqrt{\log \left\{ \sin \left(\frac{x^3}{3} - 1 \right) \right\}}$ with respect to x.	3 mark 65/7/1
31	If $f(x) = \begin{cases} \frac{\sin^2 ax}{x^2} & \text{, if } x \neq 0 \\ 1 & \text{, if } x = 0 \end{cases}$ is continuous at $x = 0$, then the value of 'a' is :	1mark 65/7/2
	(A) ±1 (B) -1	
20	(C) 0 (D) 1	21-
32	Show that the derivative of $\tan^{-1}(\sec x + \tan x)$, $\left[-\frac{\pi}{2} < x < \frac{\pi}{2}\right]$ with respect to x is equal to $\frac{1}{2}$.	3 mark 65/7/2
33	$If f(x) = \begin{cases} 3ax - b & , x > 1 \\ 11 & , x = 1 \\ -5ax - 2b & , x < 1 \end{cases}$ is continuous at x = 1, then the values of a and b are: (A) $a = 3, b = 5$ (B) $a = 8, b = -1$	1 mark 65/7/3
	(C) $a = 1, b = -8$ (D) $a = -3, b = 5$	
34	Differentiate $\log (x^x + \csc^2 x)$ with respect to x.	3 mark 65/7/3
35	If $\sqrt{x} + \sqrt{y} = \sqrt{a}$, then $\frac{dy}{dx}$ is	1 mark 65(B)
	(A) $\frac{-\sqrt{x}}{\sqrt{y}}$ (B) $-\frac{1}{2}\frac{\sqrt{y}}{\sqrt{x}}$	
	(C) $-\frac{\sqrt{y}}{\sqrt{x}}$ (D) $\frac{-2\sqrt{y}}{\sqrt{x}}$	
36	If $y = \tan^{-1}\left(\frac{1-\cos x}{\sin x}\right)$, then $\frac{dy}{dx}$ is	1 mark 65(B)
	(A) 1 (B) $\frac{1}{2}$	
	(C) $-\frac{1}{2}$ (D) -1	
37	1 12 120 121 14	2 mark
	 (a) Show that the function f(x) = (x - 1)³ is not differentiable at x = 1. 	65(B)
	(b) Differentiate $y = \log \left(x + \sqrt{x^2 + a^2}\right)$ w.r.t. x .	
38	(a) Differentiate $x^{\sin x} + (\sin x)^x$ w.r.t. x.	5 mark
	OR	65(B)
	(b) If $y = x + \tan x$, then prove that $\cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$	
Page.	ax-	

Page- [44]

	ANSWERS	
	(C) $f(x)$ is continuous but not differentiable, at $x = 0$ and $x = 1$.	
	(D) Assertion (A) is false, but Reason (R) is true.	
. (a)	Let $u = 2^{\cos^2 x} \Rightarrow \frac{du}{dx} = 2^{\cos^2 x} \left(-2\cos x \sin x \right) \log 2$ Let $v = \cos^2 x \Rightarrow \frac{dv}{dx} = -2\cos x \sin x$ Now $\frac{du}{dv} = \frac{\left(\frac{du}{dx}\right)}{\left(\frac{dv}{dx}\right)} = 2^{\cos^2 x} \log 2$	
b)	OR	
	$\tan^{-1}(x^2 + y^2) = a^2 \Rightarrow x^2 + y^2 = \tan a^2$	
	Differentiate both sides wrt x,	
	$2x + 2y \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$	
	(a) Put $x = \cos \theta \Rightarrow \theta = \cos^{-1} x$	1/2
	Let $u = \tan^{-1} \frac{\sqrt{1-x^2}}{x} = \tan^{-1} \left(\frac{\sin \theta}{\cos \theta} \right) = \tan^{-1} \left(\tan \theta \right) = \theta = \cos^{-1} x$	11/2
	$\Rightarrow \frac{du}{dx} = -\frac{1}{\sqrt{1-x^2}}$	1/2
	$dx = \sqrt{1-x^2}$	20,50
		11/
	Let $v = \cos^{-1}\left(2x\sqrt{1-x^2}\right) = \cos^{-1}\left(\sin 2\theta\right) = \cos^{-1}\left(\cos\left(\frac{\pi}{2} - 2\theta\right)\right) = \frac{\pi}{2} - 2\cos^{-1}x$	11/2
		1½

Page- [45]

	OR	
	(b) Let $y = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, where $u = x^{\tan x}$, $v = \frac{\sqrt{x^2 + 1}}{2}$	1
	$u = x^{\tan x} \Rightarrow \log u = \tan x \log x$, differentiating with respect to 'x', we get	
	$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{\tan x}{x} + \sec^2 x \log x$	11/2
	$\Rightarrow \frac{du}{dx} = u \left(\frac{\tan x}{x} + \sec^2 x \log x \right) = x^{\tan x} \left(\frac{\tan x}{x} + \sec^2 x \log x \right)$	1/2
	$v = \frac{\sqrt{x^2 + 1}}{2} \Rightarrow \frac{dv}{dx} = \frac{2x}{4\sqrt{x^2 + 1}} = \frac{x}{2\sqrt{x^2 + 1}}$	1½
	$\Rightarrow \frac{dy}{dx} = x^{\tan x} \left(\frac{\tan x}{x} + \sec^2 x \log x \right) + \frac{x}{2\sqrt{x^2 + 1}}$	1/2
5 (a)		
) (a)	Let $x = \sin A$, $y = \sin B \Rightarrow A = \sin^{-1} x$, $B = \sin^{-1} y$	
	$\therefore \sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$	
	$\Rightarrow \cos A + \cos B = a(\sin A - \sin B)$	
	$\Rightarrow 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = 2a\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$	
	$\Rightarrow \cot\left(\frac{A-B}{2}\right) = a \Rightarrow A-B = 2\cot^{-1}a$	
	\ /	
	$\Rightarrow \sin^{-1} x - \sin^{-1} y = 2\cot^{-1} a$ differentiate both sides wrt x,	
	$\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$	
	$\sqrt{1-x^2}$ $\sqrt{1-y^2}$ dx	
	$\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$	
b)	$x = a \left(\cos \theta + \log \tan \frac{\theta}{2} \right)$	
į	$\Rightarrow \frac{dx}{d\theta} = a \left(-\sin\theta + \frac{1}{\tan\frac{\theta}{2}} \times \sec^2\frac{\theta}{2} \times \frac{1}{2} \right)$	1/2
	$= a \left(-\sin\theta + \frac{1}{\sin\theta} \right) = a \left(\frac{1 - \sin^2\theta}{\sin\theta} \right)$	1/2
	$\frac{dx}{d\theta} = a \cot \theta \cos \theta$	1/2
	Also, $y = \sin \theta \Rightarrow \frac{dy}{d\theta} = \cos \theta$	%
	$\frac{dy}{dx} = \frac{\tan \theta}{a}$	
	Differentiating wrt x,	
	$\frac{d^2y}{dx^2} = \frac{\sec^2\theta}{a} \times \frac{d\theta}{dx}$ $d^2y = 2\sqrt{2}$	
	$= \frac{\sec^{\delta}\theta\tan\theta}{a^{2}} = \frac{\sec^{\delta}\theta\tan\theta}{a^{2}}$	
	- a ²	

6 (a)	$(B)_A$	
	в)	
7	(a) $x = e^{\frac{x}{y}}$ $\Rightarrow log x = \frac{x}{y}$	
	$\Rightarrow ylogx = x$ Differentiating both sides w.r.to x, we get	3/2
	$\frac{y}{x} + \log x \frac{dy}{dx} = 1$	1
	$\Rightarrow \frac{dy}{dx} = \frac{x - y}{x \log x}$ OR	½.
	(b) $Lf'(-2) = \lim_{h\to 0} \frac{f(-2-h)-f(-2)}{-h}$ $(h > 0)$	
	$= \lim_{h \to 0} \frac{2(-2-h) - 3 - (-7)}{-h}$	
	$= \lim_{h \to 0} 2 = 2$ $Rf'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h} \qquad (h > 0)$	1
	$=\lim_{h\to 0}\frac{-2+h+1-(-7)}{h}$	
	$=\lim_{h\to 0}\frac{6+h}{h}, \text{ which does not exist, i.e., RHD does not exist.}$	
	Therefore, the function is not differentiable at -2. Note: (1) If a student finds only RHD and concludes the resul (2) If a student proves that the function is discontinuous at -1 at -2, full marks may be awarded.	
8 (a)	The given function can be written as	
	$y = 2 \log(x + 1) - \log x$ $\Rightarrow y_1 = \frac{2}{x + 1} - \frac{1}{x} = \frac{x - 1}{x(x + 1)}$	
	$x + 1 x x(x + 1)$ $\Rightarrow (x + 1)y_1 = \frac{x - 1}{x} = 1 - \frac{1}{x}$	
	$x\sqrt{1+y}+y\sqrt{1}$	
	$\Rightarrow (x+1)y_2 + y_1 = \frac{1}{x^2}$ $\Rightarrow x\sqrt{1+y} = -\frac{1}{x^2}$ $\Rightarrow x^3(1+y) = -\frac{1}{x^2}$	$v^2(1+x)$
(b)	$\Rightarrow x(x+1)^{2}y_{2} + x(x+1)y_{1} = 1 + \frac{1}{x}$ $\Rightarrow (x-y)(x+y) = (x-y)(x+y)$	(x - y) = 0 $(x - y) = 0$
	$\Rightarrow x(x+1)^{2}y_{2} + x(x+1)y_{1} = 1 + 1 - (x+1)y_{1}$ $\Rightarrow x + y \rightarrow x + y - x$ $\Rightarrow y = \frac{-x}{x}$	+xy=0
	$\Rightarrow x(x+1)^2 y_2 + (x+1)^2 y_1 = 2$	
	$OR \qquad \qquad = \frac{dy}{dx} = \frac{-1}{(1+x)}$	ž

9 (a)	3 2 2 (- 2)/1)		
) (a)	$\lim_{x \to 1} \frac{x^2 - 2x - 3}{x + 1} = \lim_{x \to 1} \frac{(x - 3)(x + 1)}{x + 1} = \lim_{x \to 1} (x - 3) = -4$	2	
	Also, $f(-1)=k$	46	
	as f is continuous, $k=-4$	3/2	
	OR	- 20	
(b)	7050		
	$f(x) = x x = \begin{cases} -x^2 & x \le 0 \\ x^2 & x > 0 \end{cases}$	1	
	$LHD = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{-h^2 - 0}{-h} = 0$	18	
	RHD = $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{h^2-0}{h} = 0$	1/2	
	Since LHD = RHD, f is differentiable at $x = 0$	1/2	
10	(D) -1		
11	(B) x = 1		
12	(C) $\frac{1}{2}$		
13	(A) 0		
14	(C) ±1		
15	(B) f is neither continuous nor differentiable at x=2.		
16	(a) Let $y = \frac{\sin x}{\sqrt{\cos x}}$		
	VIEW 13 S. F. C.		
	$\frac{dy}{dx} = \frac{\sqrt{\cos x \cdot \cos x - \sin x \cdot \left(\frac{-\sin x}{2\sqrt{\cos x}}\right)}}{2\sqrt{\cos x}}$		11/2
	dx cosx		
	$\Rightarrow \frac{dy}{dx} = \frac{2\cos^2 x + \sin^2 x}{2(\cos x)^{3/2}} \text{ or } \frac{1 + \cos^2 x}{2(\cos x)^{3/2}}$		1/2
	OR		
	(b) $y = 5\cos x - 3\sin x$, then $\frac{dy}{dx} = -5 \cdot \sin x - 3 \cdot \cos x$		1
	$\Rightarrow \frac{d^2y}{dx^2} = -5.\cos x + 3.\sin x = -y$		1/4
	$\Rightarrow \frac{d^2y}{dx^2} + y = 0$		1/2
17	(a) Let $u = a^{t+\frac{1}{t}} \Rightarrow \frac{du}{dt} = a^{t+\frac{1}{t}} \cdot \log a \cdot \left(1 - \frac{1}{t^2}\right)$		
	$v - \left(t + \frac{1}{t}\right)^{\alpha} \ \rightarrow \frac{dv}{dt} - a \left(t + \frac{1}{t}\right)^{\alpha - 1}, \left(1 - \frac{1}{t^2}\right)$		
	$\frac{du}{dv} = \frac{du/dt}{dv/dt} = \frac{a^{t+\frac{1}{t},\log n}}{a(t+\frac{1}{t})^{n-1}}$		
	OR		
	(b) Let $u - y^x$, $v - x^y$ and $w - x^x$		
	$\Rightarrow \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} = 0 \dots (1)$		
	$u = y^x \Rightarrow logu = x.logy \Rightarrow \frac{1}{u}.\frac{du}{dx} = \frac{x}{v}.\frac{dy}{dx} + logy$		
	$\Rightarrow \frac{d\mathbf{u}}{dx} = \mathbf{y}^{x} \left(\frac{\mathbf{x}}{\mathbf{y}} \cdot \frac{d\mathbf{y}}{dx} + \mathbf{logy} \right) = x \mathbf{y}^{x-1} \frac{d\mathbf{y}}{dx} + \mathbf{y}^{x} \mathbf{log} \mathbf{y}$		
<u> </u>	E		

	1 dv y dy	
	$v = x^y \Rightarrow log v = y \cdot log x \Rightarrow \frac{1}{v} \cdot \frac{dv}{dx} = \frac{y}{x} + log x \cdot \frac{dy}{dx}$	
	$\Rightarrow \frac{dv}{dx} = x^{y} \left(\frac{y}{x} + \log x \cdot \frac{dy}{dx} \right) = yx^{y-1} + x^{y} \log x \cdot \frac{dy}{dx}$	
	$w - x^x \rightarrow logw - x \cdot logx \rightarrow \frac{1}{w} \cdot \frac{dw}{dx} - 1 + logx$	
	$\Rightarrow \frac{\mathbf{dw}}{\mathbf{dx}} = \mathbf{x}^{\mathbf{x}}.\left(1 + \log \mathbf{x}\right)$	
	∴ From (i), we get	
	$xy^{x-1}\cdot\frac{dy}{dx}+y^x\cdot\log y+yx^{y-1}+x^y\cdot\log x\cdot\frac{dy}{dx}+x^x\cdot(1+\log y)$	x) = 0
	$\to \frac{dy}{dx} = -\frac{x^{x} \cdot (1 + \log x) + y^{x} \cdot \log y + yx^{y-1}}{x \cdot y^{x-1} + x^{y} \cdot \log x}$	
18	Same States Stat	
	(C) a – b	
19	(A) x/y	
20	(C) -y	
21	(D) f is differentiable at $x = 0$	
22	(D) Assertion (A) is false, but Reason (R) is true.	
23	(a) Let $u = \sqrt{e^{\sqrt{2x}}}$ and $v = e^{\sqrt{2x}}$	1/2
	Derivative of \sqrt{v} w.r.t. $v = \frac{1}{2\sqrt{v}}$.	1
	Required derivative = $\frac{1}{2\sqrt{e^{\sqrt{2x}}}}$ OR	1/2
	Taking log on both sides, we get y logx = x logy Differentiating both sides w.r.t. x, we get	1/2
	$\frac{y}{x} + \log x \frac{dy}{dx} = \frac{x}{y} \frac{dy}{dx} + \log y$	1
	$\Rightarrow \frac{dy}{dx} = \frac{y(x \log y - y)}{x(y \log x - x)}$	1/2
24	(a) $x = \sin t$ gives $y = \sin^{-1}(\sin 3t) = 3t = 3\sin^{-1}x$	$\frac{1}{2} + 1 + \frac{1}{2}$
	$\frac{dy}{dx} = \frac{3}{\sqrt{3}}$	1
	$\frac{dy}{dx} = \frac{3}{\sqrt{1-x^2}}$ Aliter: $\frac{dy}{dx} = \frac{3-12x^2}{\sqrt{1-(3x^2-4x^2)^2}}$	3
	OR	
	(b) $x = \tan t$ gives $y = \cos^{-1}(\cos 2t) = 2t = 2\tan^{-1}x$	$\frac{1}{2} + 1 + \frac{1}{2}$
	$\frac{dy}{dx} = \frac{2}{1+x^2}$	1
	Aliter: $\frac{dy}{dx} = \frac{-1}{\sqrt{1-(\frac{1-x^2}{1+x^2})^2}}, \frac{-4x}{(1+x^2)^2}$	3
25	(A) Minimum value of f does not exist	
26	(A) a= 3, b= -8	
27	(B) $f'\left(\frac{1}{2}\right) = -f'\left(-\frac{1}{2}\right)$	
28	(A)Both Assertion (A) and Reason (R) are true, and Reason	(R) is the correct
	explanation of the Assertion (A).	

29 (a) Let, $y = \frac{5^x}{x^5} = 5^x \cdot x^{-5} \Rightarrow \frac{dy}{dx} = (5^x)' \cdot x^{-6} + 5^x \cdot (x^{-6})'$	
$= \frac{5^{x}}{x^{6}} \log 5 - \frac{5^{x+1}}{x^{6}}$	
OR	
(b) Differentiating $-2x^2 - 5xy + y^3 = 76$, with respect to 'x'	
$-4x - 5y - 5x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$	
$\Rightarrow \frac{dy}{dx} = \frac{4x + 5y}{3y^2 - 5x}$	
$\frac{dy}{dx} = \frac{1}{2\sqrt{\log\left\{\sin\left(\frac{x^3}{3} - 1\right)\right\}}} \cdot \frac{1}{\sin\left(\frac{x^3}{3} - 1\right)} \cdot \cos\left(\frac{x^3}{3} - 1\right) \cdot \frac{3x^2}{3}$ $x^2 \cot\left(\frac{x^3}{3} - 1\right)$	
$=\frac{2\sqrt{\log\left\{\sin\left(\frac{x^2}{3}-1\right)\right\}}}$	
$\begin{array}{c c} $	
$\tan^{-1}\left(\sec x + \tan x\right) = \tan^{-1}\left(\frac{1+\sin x}{\cos x}\right) = \tan^{-1}\left(\frac{1+\cos\left(\frac{\pi}{2}-x\right)}{\sin\left(\frac{\pi}{2}-x\right)}\right)$	1/2
$= \tan^{-1} \left(\frac{2\cos^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)}{2\sin \left(\frac{\pi}{4} - \frac{x}{2} \right) \cos \left(\frac{\pi}{4} - \frac{x}{2} \right)} \right)$ $= \tan^{-1} \left(\cot \left(\frac{\pi}{4} - \frac{x}{2} \right) \right)$	17
$= \tan^{-1} \left(\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right) = \frac{\pi}{4} + \frac{x}{2}$	1
$\therefore \left(\tan^{-1}\left(\sec x + \tan x\right)\right)' = \frac{1}{2}$	1/2
33 (C) a= 1, b= -8	
$\frac{d}{dx}\log(x^x + \cos ec^2x) = \frac{1}{x^x + \csc^2x}\frac{d}{dx}(e^{x\log x} + \cos ec^2x) (\because x^x = e^{x\log x})$	1
$= \frac{1}{x^{x} + \cos ec^{2}x} \left[e^{a\log x} \left(1 + \log x \right) - 2\cos ec^{2}x \cot x \right]$	11/2
$= \frac{1}{x^x + \cos ec^2 x} \left[x^x \left(1 + \log x \right) - 2 \cos ec^2 x \cot x \right]$	1/2
$(C) - \frac{\sqrt{y}}{\sqrt{x}}$	
$(B)^{\frac{1}{2}}$	
Page_ [50] Convright_@/2025/Iitu Sharma	

Page- [50]

37	(a) $f'(x) = \frac{1}{3}(x-1)^{\frac{-2}{3}}$ f'(1) is not defined OR
	(b) $y = log(x + \sqrt{x^2 + a^2})$ $\frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}$
	$=\frac{1}{\sqrt{r^2+a^2}}$
38	(a) Let $y = x^{sinx} + (sinx)^x = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ $u = x^{sinx}$ $\Rightarrow logu = sinx logx$
	$\Rightarrow \frac{du}{dx} = x^{sinx} \left[\frac{sinx}{x} + cosx \log x \right]$ $v = (sinx)^{x}$ $\Rightarrow \log v = x \log(sinx)$
	$\Rightarrow \frac{dv}{dx} = (\sin x)^x [x \cot x + \log(\sin x)]$ $\Rightarrow \frac{dy}{dx} = x^{\sin x} \left[\frac{\sin x}{x} + \cos x \log x \right] + (\sin x)^x [x \cot x + \log(\sin x)]$
	OR
	(b) $y = x + tanx$
	$\Rightarrow \frac{dy}{dx} = 1 + sec^2x$
	$\Rightarrow \frac{d^2y}{dx^2} = 2sec^2xtanx$
	$\Rightarrow \cos^2 x \frac{d^2 y}{dx^2} = 2\tan x$
	$\Rightarrow \cos^2 x \frac{d^2 y}{dx^2} = 2x + 2\tan x - 2x$ $\Rightarrow \cos^2 x \frac{d^2 y}{dx^2} = 2y - 2x$
	$\Rightarrow \cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$
	dx^2

	CHAPTER-6 APPLICATION OF DERIVATIVES	3
Q.		Code and Marks
1	The absolute maximum value of function $f(x) = x^3 - 3x + 2$ in $[0, 2]$ is: (A) 0 (B) 2 (C) 4 (D) 5	65/1/1 65/1/2 65/1/3 1M
2	Find the intervals in which function $f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}$ is (i) increasing (ii) decreasing.	65/1/1 2M
3	The side of an equilateral triangle is increasing at the rate of 3 cm/s. At what rate its area increasing when the side of the triangle is 15 cm?	65/1/1 3M
4	Find the absolute maximum and absolute minimum of function $f(x) = 2x^3 - 15x^2 + 36x + 1$ on [1, 5].	65/1/1 65/1/2 5M
5		65/1/1 65/1/2 65/1/3
	A technical company is designing a rectangular solar panel installation on a roof using 300 metres of boundary material. The design includes a partition running parallel to one of the sides dividing the area (roof) into	4M
	two sections. Let the length of the side perpendicular to the partition be x metres and with parallel to the partition be y metres. Based on this information, answer the following questions:	
	(i) Write the equation for the total boundary material used in the boundary and parallel to the partition in terms of x and y.	
	 (ii) Write the area of the solar panel as a function of x. (iii) (a) Find the critical points of the area function. Use second derivative test to determine critical points at the maximum area. Also, find the maximum area. 	
	(iii) (b) Using first derivative test, calculate the maximum area the company can enclose with the 300 metres of boundary material, considering the parallel partition.	
<u></u>	Find the values of 'a' for which $f(x) = x^2 - 2ax + b$ is an increasing function for $x > 0$.	65/1/2 2M
7	The area of an expanding rectangle is increasing at the rate of 48 cm ² /s. The length of the rectangle is always square of its breadth. At what rate the length of rectangle increasing at an instant, when breadth = 4.5 cm?	65/1/2 3M
8	Find the values of 'a' for which $f(x) = \sqrt{3} \sin x - \cos x - 2ax + b$ is decreasing on \mathbb{R} .	65/1/3 2M

9	A spherical medicine ball when dropped in water dissolves in such a way that the rate of decrease of volume at any instant is proportional to its surface area. Calculate the rate of decrease of its radius.	65/1/3 3M
10	The function $f(x) = x^2 - 4x + 6$ is increasing in the interval	65/2/1
	(A) (0, 2) (B) (-∞, 2]	
	(C) $[1, 2]$ (D) $[2, \infty)$	
11	A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm ³ /s. The rate, at which the height of the sugar inside the tank is increasing, is:	65/2/1 65/2/2 65/2/3
	(A) 0.1 cm/s (B) 0.5 cm/s	1M
	(C) 1 cm/s (D) 1.1 cm/s	
12	Find the values of 'a' for which $f(x) = \sin x - ax + b$ is increasing on R.	65/2/1 65/2/2 65/2/3 2M
13		65/2/1 65/2/2 65/2/3
14	 A small town is analyzing the pattern of a new street light installation. The lights are set up in such a way that the intensity of light at any point x metres from the start of the street can be modelled by f(x) = e^x sin x, where x is in metres. Based on the above, answer the following: (i) Find the intervals on which the f(x) is increasing or decreasing, x ∈ [0, π]. (ii) Verify, whether each critical point when x ∈ [0, π] is a point of local maximum or local minimum or a point of inflexion. 	CE 14.11
14	The values of λ so that $f(x)=\sin x-\cos x-\lambda x+C$ decreases for all real values of x are :	65/4/1 65/4/2 65/4/3
	(A) $1 < \lambda < \sqrt{2}$ (B) $\lambda \ge 1$	1M
	(C) $\lambda \ge \sqrt{2}$ (D) $\lambda < 1$	
15	If $f(x) = 2x + \cos x$, then $f(x)$:	65/4/1
	(A) has a maxima at $x = \pi$ (B) has a minima at $x = \pi$	65/4/2 65/4/3
	(C) is an increasing function (D) is a decreasing function	1M ,
16	(a) Find the least value of 'a' so that $f(x) = 2x^2 - ax + 3$ is an increasing function on [2, 4].	65/4/1 65/4/2 65/4/3

	(b) If $f(x) = x + \frac{1}{x}$, $x \ge 1$, show that f is an increasing function.	
17	A .	65/4/1
17	For the curve $y = 5x - 2x^3$, if x increases at the rate of 2 units/s, then how	2M
	fast is the slope of the curve changing when $x = 2$?	
18	The relation between the height of the plant (y cm) with respect to exposure to sunlight is governed by the equation $y = 4x - \frac{1}{2}x^2$, where x is	65/4/1 65/4/2 5M
	the number of days exposed to sunlight.	
	(i) Find the rate of growth of the plant with respect to sunlight.	
	(ii) In how many days will the plant attain its maximum height? What is the maximum height?	
19	Find the local maxima and local minima of the function $f(x) = \frac{8}{3}x^3 - 12x^2 + 18x + 5.$	65/4/2 2M
20	A cylindrical water container has developed a leak at the bottom. The water is leaking at the rate of 5 cm ³ /s from the leak. If the radius of the container is 15 cm, find the rate at which the height of water is decreasing inside the container, when the height of water is 2 metres.	65/4/3 2M
21	The slope of the curve $y = -x^3 + 3x^2 + 8x - 20$ is maximum at : (A) $(1, -10)$ (B) $(1, 10)$ (C) $(10, 1)$ (D) $(-10, 1)$	65/5/1 65/5/2 65/5/3 1M
22	Surface area of a balloon (spherical), when air is blown into it, increases at a rate of 5 mm ² /s. When the radius of the balloon is 8 mm, find the rate at which the volume of the balloon is increasing.	65/5/1 2M
23	Find the value of 'a' for which $f(x) = \sqrt{3} \sin x - \cos x - 2ax + 6$ is decreasing in R.	65/5/1 3M
24	A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.	65/5/1 65/5/2 65/5/3 4M
	On the basis of the above information, answer the following questions:	
	(i) Taking length = breadth = x m and height = y m, express the surface area (S) of the box in terms of x and its volume (V), which is	
	constant.	
	(ii) Find $\frac{dS}{dx}$.	

	(iii) (a) Find a relation between x and y such that the surface area (S)	
	is minimum.	
	OR	
	(iii) (b) If surface area (S) is constant, the volume (V) = $\frac{1}{4}$ (Sx - 2x ³),	
	x being the edge of base. Show that volume (V) is maximum for $x = \sqrt{\frac{S}{6}}$.	
	V6.	
25	The radius of a cylinder is decreasing at a rate of 2 cm/s and the altitude	65/5/2
	is increasing at the rate of 3 cm/s. Find the rate of change of volume of	2M
	this cylinder when its radius is 4 cm and altitude is 6 cm.	
26	Show that $f(x) = \tan^{-1}(\sin x + \cos x)$ is an increasing function in $\left[0, \frac{\pi}{4}\right]$.	65/5/2 3M
27	Let the volume of a metallic hollow sphere be constant. If the inner	65/5/3
	radius increases at the rate of 2 cm/s, find the rate of increase of the	2M
	outer radius when the radii are 2 cm and 4 cm respectively.	
28	Find the interval/intervals in which the function $f(x) = \sin 3x - \cos 3x$,	65/5/3 3M
	$0 < x < \frac{\pi}{2}$ is strictly increasing.	SIVI
29	Determine the values of x for which $f(x) = \frac{x-4}{x+1}$, $x \neq -1$ is an increasing	65/6/1 2M
	or a decreasing function.	
30		65/6/1 65/6/2 65/6/3
		4M
	A ladder of fixed length 'h' is to be placed along the wall such that it is free to move along the height of the wall.	
	Based upon the above information, answer the following questions: (i) Express the distance (y) between the wall and foot of the ladder in terms of 'h' and height (x) on the wall at a certain instant. Also, write an expression in terms of h and x for the area (A) of the right triangle, as seen from the side by an observer.	
	(ii) Find the derivative of the area (A) with respect to the height on the wall (x), and find its critical point.	
1		

	(iii) (a) Show that the area (A) of the right triangle is maximum at the critical point.	
	(iii) (b) If the foot of the ladder whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance (y) is 2 m/s, then at what rate is the height on the wall (x) increasing, when the foot of the ladder is 3 m away from the wall?	
31	Determine those values of x for which $f(x) = \frac{2}{x} - 5$, $x \neq 0$ is increasing or decreasing.	65/6/2 2M
32	 Let f(x) = x , x ∈ R. Then, which of the following statements is incorrect? (A) f has a minimum value at x = 0. (B) f has no maximum value in R. (C) f is continuous at x = 0. (D) f is differentiable at x = 0. 	65/6/1 1M
33	 Let f(x) = x², x ∈ R. Then, which of the following statements is incorrect? (A) Minimum value of f does not exist. (B) There is no point of maximum value of f in R. (C) f is continuous at x = 0. (D) f is differentiable at x = 0. 	65/6/2 1M
34	$f(x) = x^x$ has a critical point at: (A) $x = e$ (B) $x = e^{-1}$ (C) $x = 0$ (D) $x = 1$	65/6/3 1M
35	Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.	65/6/3 2M
36	A spherical ball has a variable diameter $\frac{5}{2}(3x+1)$. The rate of change of its volume w.r.t. x, when $x=1$, is: (A) 225π (B) 300π (C) 375π (D) 125π	65/7/1 1M
37	If $f: R \to R$ is defined as $f(x) = 2x - \sin x$, then f is : (A) a decreasing function (B) an increasing function (C) maximum at $x = \frac{\pi}{2}$ (D) maximum at $x = 0$	65/7/1 65/7/2 65/7/3 1M

38	Amongst all pairs of positive integers with product as 289, find which of the two numbers add up to the least.	65/7/1 3M
39	If $f(x) = -2x^8$, then the correct statement is:	65/7/2 1M
	(A) $f'\left(\frac{1}{2}\right) = f'\left(-\frac{1}{2}\right)$ (B) $f'\left(\frac{1}{2}\right) = -f'\left(-\frac{1}{2}\right)$	
	(C) $-f'\left(\frac{1}{2}\right) = f\left(-\frac{1}{2}\right)$ (D) $f\left(\frac{1}{2}\right) = -f\left(-\frac{1}{2}\right)$	
40	Find dimensions of a rectangle of perimeter 12 cm which will generate maximum volume when swept along a circular rotation keeping the shorter side fixed as the axis.	65/7/2 3M
41	Edge of a variable cube increases at the rate of 5 cm/s. The rate at which the surface area of the cube increases when the edge is 2 cm long is:	65/7/3 1M
	(A) 24 cm ² /s (B) 120 cm ² /s	
	(C) $12 \text{ cm}^2/\text{s}$ (D) $5 \text{ cm}^2/\text{s}$	
42	Show that of all the rectangles with a fixed perimeter, the square has the greatest area.	65/7/3 3M
43	When x is positive, the minimum value of x^x is	65(B) 1M
	(A) e^{e} (B) $\frac{1}{e^{e}}$	
	<u>1</u> <u>-1</u>	
	(C) e e (D) e e	
44	If $y = 7x - x^3$ and x increases at the rate of 2 units per second, then how fast is the slope of the curve changing, when $x = 5$?	65(B) 2M
45	Find the intervals in which the function	65(B)
	$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is	3M
	(a) strictly increasing	
	(b) strictly decreasing	
46	An architect designs a building for a Company. The design of window on the ground floor is proposed to be different than at the other floors. The window is in the shape of a rectangle whose top length is surmounted by a semi-circular opening. This window has a perimeter of 10 m.	65(B) 4M

 (i) If 2x and 2y represent the length and breadth of the rectangular portion of the window, then establish a relation
between x and y. (ii) Find the total area of the window in terms of x. (iii) (a) Find the values of x and y for the maximum area of the
window. OR
(iii) (b) If x and y represent the length and breadth of the rectangle, then establish the expression for the area of the window in terms of x only.
ANSWERS
(C) 4
$f(x) = 5x^{3/2} - 3x^{5/2} \Rightarrow f'(x) = \frac{15}{2}\sqrt{x}(1-x)$
For increasing/decreasing, put $f'(x) = 0$
$\Rightarrow x = 0,1$
(i) When $x \in [0,1]$, $f'(x) \ge 0$. So, f is increasing when $x \in [0,1]$
(The intervals $(0,1)$, $[0,1)$ or $(0,1]$ can also be considered.)
(ii) When $x \in [1, \infty)$, $f'(x) \le 0$. So, f is decreasing when $x \in [1, \infty)$
(The interval (1,∞) can also be considered.)
Let'a' be the side of the triangle, so $\frac{da}{dt} = 3 \text{ cm/s}$
Now area of an equilateral triangle, $A = \frac{\sqrt{3}}{4}a^2$
$\Rightarrow \frac{dA}{da} = \frac{\sqrt{3}a}{\sqrt{3}a} \times \frac{da}{da}$
$\therefore \frac{dA}{dt} \bigg _{t=15} = \frac{\frac{dt}{3} \times 15}{2} \times 3 = \frac{45\sqrt{3}}{2} \text{ cm}^2/\text{s}$
$f(x) = 2x^3 - 15x^2 + 36x + 1$
$\Rightarrow f'(x) = 6(x^2 - 5x + 6) = 6(x - 2)(x - 3)$
$f'(x) = 0 \Rightarrow x = 2, 3 \in [1, 5]$
Now $f(1)=24$, $f(2)=29$, $f(3)=28$, $f(5)=56$
Hence, the absolute maximum value is 56 and the absolute minimum value is 24.
(i)2x+3y=300
$(ii) A = xy = \frac{x}{3} (300 - 2x)$
$(iii)(a)A = \frac{x}{3}(300-2x) = \frac{1}{3}(300x-2x^2)$
$\Rightarrow \frac{dA}{dx} = \frac{1}{3} (300 - 4x)$
For critical points, put $\frac{dA}{dx} = 0 \Rightarrow x = 75$

	Also, $\frac{d^2A}{dx^2} = -\frac{4}{3} < 0$. So, A is maximum at $x = 75$
	Also, maximum area is $A = \frac{75}{3} (300 - 150) = 3750 \text{m}^2$
	OR
	$(iii)(b)A = \frac{x}{3}(300-2x) = \frac{1}{3}(300x-2x^2)$
	$\Rightarrow \frac{dA}{dx} = \frac{1}{3}(300 - 4x)$
	For critical points, put $\frac{dA}{dx} = 0 \Rightarrow x = 75$
	As $\frac{dA}{dx}$ changes its sign from positive to negative as x passes through
	x = 75 from left to right, which means $x = 75$ is the point of maximum.
	Also, maximum area is $A = \frac{75}{3} (300 - 150) = 3750 \text{m}^2$
	Note: Full credit to be given if the student takes equation as
	2x + 2y = 300 or $2x + 4y = 300$ or $4x + 4y = 300$ or $4x + 3y = 300The solutions of sub-parts will differ and marks may be given accordingly.$
6	A2 NV
	f'(x) = 2x - 2a
	$0 < x < \infty \Rightarrow -2a < 2x - 2a < \infty \Rightarrow -2a < f'(x) < \infty$
	$f(x)$ is increasing iff $f'(x) \ge 0$
	$\Rightarrow -2a \in [0,\infty) \Rightarrow a \in (-\infty,0] \text{ or } (-\infty,0)$
7	Let the length and breadth of the expanding rectangle at any time be 'x' and 'y' respectively.
	Then, $x = y^2$, $A(Area) = xy = x^{\frac{3}{2}}$
	$\frac{dA}{dt} = \frac{3}{2} \sqrt{x} \frac{dx}{dt}$
	$\Rightarrow 48 = \frac{3}{2}\sqrt{(4.5)^2} \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{64}{9} \text{ cm/s}$
8	'f' is a decreasing function iff $f'(x) \le 0 \Rightarrow \sqrt{3} \cos x + \sin x - 2a \le 0$
	$\Rightarrow \sin\left(x + \frac{\pi}{3}\right) \le a$
	We know that for all $x \in R$, $-1 \le \sin\left(x + \frac{\pi}{3}\right) \le 1$
	$\Rightarrow a \in [1,\infty) \text{ or } (1,\infty)$
9	Let 'V' and 'S' be the volume and surface area of the spherical medicine ball with radius 'r'.
	$\frac{dV}{dt} = -kS, \ k > 0$
	$V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \Rightarrow -kS = 4\pi r^2 \frac{dr}{dt}$
	Ol Compression 6/2025/Lity Sharmes

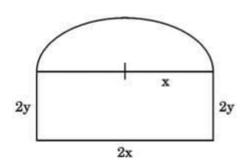
	$\Rightarrow -k\left(4\pi r^2\right) = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = -k$
10	: Radius decreases at a constant rate.
	(D) [2,∞)
11	(C) 1 cm/s
12	$f'(x) = \cos x - a$
	For $f(x)$ to be increasing, $f'(x) \ge 0$
	$i.e.,cosx \ge a$
	Since, $-1 \le cosx \le 1$
	$\Rightarrow a \leq -1$
	Hence, $a \in (-\infty, -1]$. (Also, accept $a \in (-\infty, -1)$)
13 (i)	$f'(x) = e^x(\cos x + \sin x)$
	For critical points, $f'(x) = 0$
	$\Rightarrow cosx + sinx = 0$
	$\Rightarrow cosx = -sinx$
	For x to be a critical point $x \in (0, \pi)$, hence, $x = \frac{3\pi}{4}$
	For all $x \in \left[0, \frac{3\pi}{4}\right], f'(x) \ge 0$
	Hence, f is increasing in $\left[0, \frac{3\pi}{4}\right]$
	Note: If a student concludes the answer in any of the following intervals, full marks may be awarded:
	$\left(0,\frac{3\pi}{4}\right)$ or $\left[0,\frac{3\pi}{4}\right)$ or $\left(0,\frac{3\pi}{4}\right]$
	For all $x \in \left[\frac{3\pi}{4}, \pi\right], f'(x) \le 0$
	Hence, f is decreasing in $\left[\frac{3\pi}{4}, \pi\right]$
	Note: If a student concludes the answer in any of the following intervals, full marks may be awarded:
	$(\frac{3\pi}{4},\pi) \text{ or } (\frac{3\pi}{4},\pi] \text{ or } [\frac{3\pi}{4},\pi)$
	$x = \frac{3\pi}{4}$ is a critical point
(;;)	$f''(x) = e^{x}(\cos x - \sin x) + e^{x}(\cos x + \sin x)$
(ii)	$=2e^{x}cosx$
	$f''\left(\frac{3\pi}{4}\right) = -ve$
	Hence, $\frac{3\pi}{4}$ is a point of local maximum.

14	(C) $\lambda \ge \sqrt{2}$
15	(C) is an increasing function
16 (a)	$f(x)=2x^2-ax+3 \Rightarrow f'(x)=4x-a$
	Now $2 \le x \le 4 \Longrightarrow 8 - a \le 4x - a \le 16 - a$
	For f to be an increasing function, $f'(x) \ge 0$
OR	$\Rightarrow 8 - a \ge 0 \Rightarrow a \le 8$
(b)	: Least value of a does not exist.
	$f(x) = x + \frac{1}{x} \Rightarrow f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$
	$\operatorname{Now} \frac{x^2 - 1}{x^2} \ge 0 \text{ for all } x \ge 1$
	$\Rightarrow f'(x) \ge 0 \Rightarrow f$ is an increasing function.
17	$y = 5x - 2x^3$
	Given $\frac{dx}{dt} = 2 \text{ units/s}$
	slope of the curve $=\frac{dy}{dx} = 5 - 6x^2 = m$
	$\frac{dm}{dt} = -12x \frac{dx}{dt} = -12x(2) = -24x$
	at $x = 2$, $\frac{dm}{dt} = -24(2) = -48$
	Hence, slope of curve is decreasing at the rate of 48
18	$(i)y = 4x - \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = (4 - x) \text{cm/day}$
	(ii) For maximum height, $\frac{dy}{dx} = 0 \Rightarrow x = 4 \text{ days}$
	as $\frac{d^2y}{dx^2}$ < 0, number of days = 4
	Now, Maximum height = $y(4)=16-\frac{1}{2}(16)=8$ cm
19	$f(x) = \frac{8}{3}x^3 - 12x^2 + 18x + 5$
	$\Rightarrow f'(x) = 8x^2 - 24x + 18$
	$=2(4x^2-12x+9)=2(2x-3)^2$
	For critical points, Put $f(x)=0$

	$\Rightarrow 2(2x-3)^2 = 0 \Rightarrow x = \frac{3}{2}$
	since $f'(x)$ does not change the sign as crosses $x = \frac{3}{2}$ from left to right,
	f has no local maxima or local minima.
20	Let V, r, h be the volume, radius and height of cylindrical container.
	The control of the state of the control of the cont
	$Given \frac{dV}{dt} = -5 \text{ cm}^3/\text{s}$
	$V = \pi r^2 h = \pi (15)^2 h = 225\pi h$
	$\therefore \frac{dV}{dt} = 225\pi \frac{dh}{dt} \Rightarrow -5 = 225\pi \frac{dh}{dt}$
	$\Rightarrow \frac{dh}{dt} = -\frac{5}{225\pi} = -\frac{1}{45\pi}$
	(A)
	: Height of the water is decreasing at the rate of $\frac{1}{45\pi}$ cm/s
21	(A) (1, -10)
22	$\frac{dS}{dt} = 5 \text{ mm}^2/\text{s}, \left(\frac{dV}{dt}\right)_{r=8} = ?$
	$S=4\pi r^2 \Rightarrow \frac{dS}{dt} = 8\pi r. \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{5}{8\pi r}$
	$V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt} \Rightarrow \frac{dV}{dt} = \frac{5}{2}r$
	$\Rightarrow \left(\frac{\mathrm{dV}}{\mathrm{dt}}\right)_{\mathrm{r=8}} = 20 \; \mathrm{mm}^3/\mathrm{s}$
23	Since $f(x)$ is a decreasing function $\Rightarrow f'(x) \le 0$
	$\Rightarrow \sqrt{3}.\cos x + \sin x - 2a \le 0$
	$\Rightarrow 2\left(\frac{\sqrt{3}}{2}.\cos x + \frac{1}{2}\sin x\right) - 2a \le 0$
	$\Rightarrow \cos\left(x-\frac{\pi}{6}\right) \leq a$
	Since, $-1 \le \cos\left(x - \frac{\pi}{6}\right) \le 1 \implies a \ge 1$ i. e. $a \in [1, \infty)$ or $(1, \infty)$
24	
	V V
	<u></u>
	(i) $V = x^2 y \Rightarrow y = \frac{v}{x^2} \dots \dots \dots (i)$
	Hence, $S = 2x^2 + 4xy = 2x^2 + \frac{4V}{x}$
	(ii) $\frac{dS}{dx} = 4\left(x - \frac{V}{x^2}\right)$

	(iii) (a) $\frac{dS}{dx} = 0 \Rightarrow V = x^3 \Rightarrow x^2y = x^3 \Rightarrow y = x$
	$\frac{d^2S}{dx^2} = 4\left(1 + \frac{2V}{x^3}\right) > 0 \Rightarrow S \text{ is minimum if } y = x.$
	OR
	(iii) (b) $V = \frac{1}{4}(Sx - 2x^3) \Rightarrow \frac{dV}{dx} = \frac{1}{4}(S - 6x^2)$
	Put $\frac{dV}{dx} = 0 \Rightarrow x = \sqrt{\frac{s}{6}}$
	$\left(\frac{d^2V}{dx^2}\right)_{x=\sqrt{\frac{S}{6}}} = -3\sqrt{\frac{S}{6}} < 0 \Rightarrow \text{Volume is maximum for } x = \sqrt{\frac{S}{6}}.$
25	$\frac{dr}{dt} = -2 \text{ cm /s}, \frac{dh}{dt} = 3 \text{ cm /s}, \left(\frac{dV}{dt}\right)_{r=4,h=6} = ?$
	$V = \pi r^2 h \Rightarrow \frac{dV}{dt} = 2\pi r \cdot \frac{dr}{dt} \cdot h + \pi r^2 \frac{dh}{dt}$
	When $r = 4$ cm and $h = 6$ cm,
	$\frac{dV}{dt} = 2\pi(4)(-2)(6) + \pi(4)^2(3) = -48 \pi \text{ cm}^3/\text{s}$
	Volume is decreasing at the rate of 48 π cm ³ /s
26	$f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} (\cos x - \sin x)$
	For $x \in \left[0, \frac{\pi}{4}\right]$, $\cos x \ge \sin x$
	\Rightarrow f'(x) ≥ 0 , f is an increasing function in $\left[0, \frac{\pi}{4}\right]$
27	$\frac{dr}{dt} = 2 \text{ cm /s}, \left(\frac{dR}{dt}\right)_{R=4,r=2} = ?$
	$V = \frac{4}{3}\pi(R^3 - r^3) \implies \frac{dV}{dt} = \frac{4}{3}\pi(3R^2.\frac{dR}{dt} - 3r^2\frac{dr}{dt})$
	When $R = 4$ cm and $r = 2$ cm,
	$0 = \frac{4}{3}\pi[3(4)^2.\frac{dR}{dt} - 3(2)^2(2)]$
	$\Rightarrow \frac{dR}{dt} = \frac{1}{2} \text{ cm/s}$
28	$f'(x) = 3\cos 3x + 3\sin 3x$
	$f'(x) = 0 \Rightarrow \sin 3x = -\cos 3x \Rightarrow x = \frac{\pi}{4}$
	For $x \in (0, \frac{\pi}{4})$, $3 \cos 3x + 3 \sin 3x > 0$

	CF: DI
	\Rightarrow f'(x) > 0, f is strictly increasing function in $(0, \frac{\pi}{4})$ or $(0, \frac{\pi}{4}]$
29	$f'(x) = \frac{x+1-x+4}{(x+1)^2} = \frac{5}{(x+1)^2} > 0$
20	Hence f is increasing in its domain.
30	(i) $y^2 = h^2 - x^2$
	$A = \frac{1}{2}xy = \frac{1}{2}x\sqrt{h^2 - x^2}$
	ii) $\frac{dA}{dx} = \frac{1}{2}\sqrt{h^2 - x^2} + \frac{1}{2}x\frac{-x}{\sqrt{h^2 - x^2}}$
	$\frac{dx}{dA} = 0 \text{ gives } x = \frac{h}{\sqrt{2}}$
	ux V2
	(iii)(a) A" = $\frac{1}{2} \frac{-4x \cdot \sqrt{h^2 - x^2} - (h^2 - 2x^2) \frac{-x}{\sqrt{h^2 - x^2}}}{h^2 - x^2}$ is < 0 at $x = \frac{h}{\sqrt{2}}$
	$h^2 - x^2$
	Hence A is maximum at critical point
	OR
	(iii)(b) $y^2 = 25 - x^2$ hence $y = 3$ gives $x = 4$
	$2y\frac{dy}{dt} = -2x\frac{dx}{dt}$
	$\frac{dx}{dt} = 1.5 \text{m/s}$
31	$f'(x) = \frac{-2}{x^2} < 0$
	Hence f is decreasing in its domain.
32	(D) f is differentiable at $x = 0$
33	(A) Minimum value of f does not exist
34	(B) $x = e^{-1}$
35	$f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$
	f'(x) = 0 gives $x = 1, -1$
	f is decreasing in $(-1, 0)$ U $(0, 1)$ as f '(x) < 0 f is increasing in R - $(-1, 1)$ as f '(x) > 0
36	(C) 375π
37	(B) an increasing function
38	Let numbers be 'x' and 'y' such that $xy = 289 \Rightarrow y = \frac{289}{x}$, 'S' be their sum, then
	$S = x + y = x + \frac{289}{x}$
Page- [6	4] Copyright-©/2025/Jitu Sharma


	$\frac{dS}{dx} = 1 - \frac{289}{x^2}, \frac{dS}{dx} = 0 \Rightarrow x = 17$, a positive integer
	$\frac{d^2S}{dx^2}\bigg _{x=17} = 289\bigg(\frac{2}{x^3}\bigg)\bigg _{x=17} > 0, :: S \text{ is minimum when } x = 17, y = 17$
39	(B) $f'\left(\frac{1}{2}\right) = -f'\left(-\frac{1}{2}\right)$
40	Let Length and Breadth of the rectangle be 'x' and 'y' respectively. Also 'r' be the radius of the cylinder then,
	$2(x+y)=12 \Rightarrow x+y=6$, $2\pi r=x$
	V(Volume of cylinder) = $\pi r^2 y \Rightarrow V = \pi \left(\frac{x}{2\pi}\right)^2 (6-x) = \frac{1}{4\pi} (6x^2 - x^3)$
	$V'(x) = 0 \Rightarrow \frac{1}{4\pi} (12x - 3x^2) = 0 \Rightarrow x = 4, \ (\because x \neq 0)$
	$V''(x) = \frac{1}{4\pi} (12 - 6x) \Rightarrow V''(4) = -\frac{3}{\pi} < 0$
	The volume of the cylinder obtained by the rotation will be maximum if the dimensions of the rectangle are $x = 4$ cm, $y = 2$ cm.
41	(B) 120 cm ² /s
42	Let P be the perimeter of the rectangle, which is a constant. Also assume 'x' and 'y' be the length and breadth of the rectangle, then
	$2(x+y) = P$ and $A(Area) = xy = \frac{x}{2}(P-2x) = \frac{1}{2}(Px-2x^2)$
	$A'(x) = \frac{1}{2}(P-4x), : A'(x) = 0 \Rightarrow x = \frac{P}{4}, y = \frac{P}{4}$
	$A''(x) = -2 < 0$ at $x = \frac{P}{4}$, : Area of the rectangle is max. if it is a square.
43	(D) $e^{-\frac{1}{e}}$
44	$y = 7x - x^3$ $m = 7 - 3x^2$
	$\frac{dm}{dt} = -6x\frac{dx}{dt}$
	$\left[\frac{dm}{dt}\right]_{x=5} = -30(2) = -60$
45	$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$
	$f'(x) = 12x^3 - 12x^2 - 24x$
	f'(x) = 12x(x-2)(x+1)

$$f'(x) = 0 \Rightarrow x = -1, 0, 2$$

f is strictly increasing in (-1,0) as well as $(2, \infty)$ or [-1,0] as well as $[2,\infty)$

and strictly decreasing in $(-\infty, -1)$ as well as (0,2) or $(-\infty, -1]$ as well as [0,2]

46 (i)
$$2x + 4y + \pi x = 10$$

$$A = (2x)(2y) + \frac{1}{2}\pi x^{2}$$

$$y = \frac{10 - 2x - \pi x}{4}$$

$$A = 4x \frac{(10 - 2x - \pi x)}{4} + \frac{1}{2}\pi x^{2}$$

$$A = 10x - 2x^{2} - \frac{1}{2}\pi x^{2}$$

(iii) (a)
$$\frac{dA}{dx} = 10 - 4x - \pi x = 0$$

 $\Rightarrow 10 = (\pi + 4)x$

$$\Rightarrow x = \frac{10}{\pi + 4}$$

$$\frac{d^2y}{dx^2} = -4 - \pi < 0$$

$$\Rightarrow y = \frac{1}{4} \left[10 - 2 \left(\frac{10}{\pi + 4} \right) - \pi \left(\frac{10}{\pi + 4} \right) \right]$$

$$\Rightarrow y = \frac{1}{4} \frac{\left[10\pi + 40 - 20 - 10\pi \right]}{\pi + 4}$$

$$y = \frac{1}{4} \left[\frac{20}{\pi + 4} \right] = \frac{5}{\pi + 4}$$

(iii) (b)
$$A = xy + \frac{1}{2}\pi \left(\frac{x}{2}\right)^2$$

$$x+2y+\pi\left(\frac{x}{2}\right)=10$$

$$\Rightarrow y = \frac{20 - 2x - \pi x}{4}$$

$$\therefore A = x \left(\frac{20 - 2x - \pi x}{4} \right) + \frac{1}{8} \pi x^2$$

$$A = 5x - \frac{1}{2}x^2 - \frac{\pi}{8}x^2$$

	CHAPTER-7 INTEGRALS		
Q.		Code and Marks	
1	$\int_{-\infty}^{1} \frac{ x }{x} dx, x \neq 0 \text{ is equal to}$	65/1/1 (1m)	
	-1 (A) -1 (C) 1 (B) 0 (D) 2		
2	If $\int \frac{2^{\frac{1}{x}}}{x^2} dx = k \cdot 2^{\frac{1}{x}} + C$, then k is equal to	65/1/1 65/1/2 65/1/3 (1m)	
	(A) $\frac{-1}{\log 2}$ (B) $-\log 2$		
	(C) -1 (D) $\frac{1}{2}$		
3	(a) Find: $\int \frac{x + \sin x}{1 + \cos x} dx$	65/1/1 (3m)	
	OR		
	(b) Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{\mathrm{d}x}{\cos^3 x \sqrt{2 \sin 2x}}$		
4	$\int \frac{1 - 2\sin x}{\cos^2 x} dx \text{ is equal to :}$	65/1/2 (1m)	
	(A) $\tan x - 2 \sec x + C$ (B) $-\tan x + 2 \sec x + C$ (C) $-\tan x - 2 \sec x + C$ (D) $\tan x + 2 \sec x + C$		
5	(a) Find: $\int \frac{\cos 2x}{(\sin x + \cos x)^2} dx$	65/1/2 (3m)	
	OR		
	(b) Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{5\sin x + 3\cos x}{\sin x + \cos x} dx$		

6	If $\int_{0}^{1} \frac{e^{x}}{1+x} dx = \alpha$, then $\int_{0}^{1} \frac{e^{x}}{(1+x)^{2}} dx$ is equal to	65/1/3 (1m)
	(A) $\alpha - 1 + \frac{e}{2}$ (B) $\alpha + 1 - \frac{e}{2}$	
	(C) $\alpha - 1 - \frac{e}{2}$ (D) $\alpha + 1 + \frac{e}{2}$	
7	(a) Find: $\int \frac{2x-1}{(x-1)(x+2)(x-3)} dx$ OR	65/1/3 (3m)
	(b) Evaluate: $\int_{0}^{5} (x-1 + x-2 + x-5) dx$	
8	If $f(2a - x) = f(x)$, then $\int_{0}^{2a} f(x) dx$ is	65/2/1 (1m)
	(A) $\int_{0}^{2a} f\left(\frac{x}{2}\right) dx$ (B) $\int_{0}^{a} f(x) dx$	
	(C) $2\int_{a}^{0} f(x) dx$ (D) $2\int_{0}^{a} f(x) dx$	
9	Evaluate: $\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \sin 2x} dx$	65/2/1 (2m)
10	Find: $\int \frac{1}{x} \sqrt{\frac{x+a}{x-a}} dx.$	65/2/1 (3m)
11	$\int \frac{\mathrm{d}x}{\sin^2 x \cos^2 x} $ is equal to	65/2/2 (1m)
	(A) $\tan x + \cot x + C$ (B) $(\tan x + \cot x)^2 + C$ (C) $\tan x - \cot x + C$ (D) $(\tan x - \cot x)^2 + C$	

12	Evaluate: $\int_{0}^{\pi} \frac{\sin 2px}{\sin x} dx, p \in N.$	65/2/2 (2m)
13	f and g are continuous functions on interval [a, b]. Given that $f(a - x) = f(x)$ and $g(x) + g(a - x) = a$, show that $\int_{0}^{a} f(x) g(x) dx = \frac{a}{2} \int_{0}^{a} f(x) dx$.	65/2/2 (3m)
14	Find: $\int \frac{5x}{(x+1)(x^2+9)} dx.$	65/2/2 (5m)
15	If $\int_{0}^{a} x dx \le \frac{a}{2} + 6$, then	65/2/3 (1m)
	(A) $-4 \le a \le 3$ (B) $a \ge 4, a \le -3$ (C) $-3 \le a \le 4$ (D) $-3 \le a \le 0$	
16	Find: $\int 2x^3 e^{x^2} dx.$	65/2/3 (2m)
17	If $\int_{a}^{b} x^3 dx = 0$ and $\int_{a}^{b} x^2 dx = \frac{2}{3}$, then find the values of a and b.	65/2/3 (3m)
18	Find: $\int \left(\sqrt{\tan x} + \sqrt{\cot x} \right) dx.$	65/2/3 (5m)
19	$\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx \text{ is equal to :}$	65/4/1 (1m)
	(A) $2(\sin x + x \cos \alpha) + C$ (B) $2(\sin x - x \cos \alpha) + C$	
	(C) $2(\sin x + 2x\cos\alpha) + C$ (D) $2(\sin x + \sin\alpha) + C$	

20	The value of $\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}$ is:	65/4/1 (1m)
	(A) $-\frac{\pi}{4}$ (B) $\frac{\pi}{4}$	
	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$ (D) $\tan^{-1} e$	
21	Evaluate:	65/4/1 (3m)
	$\int_{\pi/2}^{\pi} e^{x} \left(\frac{1-\sin x}{1-\cos x} \right) dx$	
22	(a) Find:	65/4/1 (5m)
	$\int \frac{\cos x}{(4+\sin^2 x)(5-4\cos^2 x)} dx$	
	OR	
	(b) Evaluate:	
	$\int_0^\pi \frac{\mathrm{dx}}{\mathrm{a}^2 \cos^2 x + \mathrm{b}^2 \sin^2 x}$	
23	$\int e^{x} (\cos x - \sin x) dx \text{ is equal to :}$	65/4/2 (1m)
	$(A) e^x \sin x + C \qquad \qquad (B) -e^x \sin x + C$	
24	(C) $-e^x \cos x + C$ (D) $e^x \cos x + C$	65/4/2
2.7	The value of $\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}$ is:	65/4/3 (1m)
	(A) $-\frac{\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\tan^{-1} e^{-\frac{\pi}{4}}$ (D) $\tan^{-1} e$	
	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$ (D) $\tan^{-1} e$	

		65/1/0
25	Find:	65/4/2 (3m)
	$\int \cos x dx$	
	$\int \frac{\cos x dx}{1 + \cos x + \sin x}$	
26	(a) Evaluate:	65/4/2 (5m)
	$\int_{0}^{\pi/4} \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$	
	OR	
	(b) Find:	
	$\int \frac{\sqrt{x^2+1} \left[\log(x^2+1) - 2\log x \right]}{x^2} dx$	
27	If $\int e^{-3 \log x} dx = f(x) + C$, then $f(x)$ is:	65/4/3 (1m)
	(A) $e^{-3 \log x}$ (B) $e^{\log \left(\frac{1}{x^3}\right)}$	
	(C) $\frac{-1}{2x^2}$ (D) $\frac{-1}{4x^4}$	
28	Find:	65/4/3 (3m)
	$\int \frac{\sqrt{x}}{1+\sqrt{x^{3/2}}} dx$	(6.2.2)
29	(a) Evaluate:	65/4/3 (5m)
	$\int_{0}^{3/2} x \cos \pi x dx$ OR	
	(b) Find:	
	$\int \frac{\mathrm{dx}}{\sin x + \sin 2x}$	

30	$\int \sqrt{1+\sin x} dx$ is equal to:	65/5/1 (1m)
	(A) $2\left(-\sin\frac{x}{2} + \cos\frac{x}{2}\right) + C$ (B) $2\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right) + C$	
	(C) $-2\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) + C$ (D) $2\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) + C$	
31	$\int_{0}^{\pi/2} \cos x \cdot e^{\sin x} dx \text{ is equal to :}$	65/5/1 (1m)
	(A) 0 (B) 1-e	
	(C) e-1 (D) e	
32	(a) Find: $\int \frac{2x}{(x^2+3)(x^2-5)} dx$	65/5/1 65/5/2 65/5/3 (3m)
	OR (b) Evaluate: $ \int_{1}^{4} (x-2 + x-4) dx $	
33	$\int \frac{\cos 2x}{\sin^2 x \cos^2 x} dx \text{ is equal to :}$	65/5/2 (1m)
	(A) $\cot x + \tan x + C$ (B) $-(\cot x + \tan x) + C$	
	(C) $-\cot x + \tan x + C$ (D) $\cot x - \tan x + C$	
34	If $\int_{0}^{a} \frac{1}{1+4x^2} dx = \frac{\pi}{8}$, then the value of 'a' is:	65/5/2 (1m)
	(A) $\frac{1}{4}$ (B) $\frac{1}{2}$	
	(C) $\frac{1}{8}$ (D) 4	

35	$\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \ dx \ is equal to:$	65/5/3 (1m)
	(A) $2(\sin x + x \cos \theta) + C$ (B) $2(\sin x - x \cos \theta) + C$	
	(C) $2(\sin x + \sin \theta) + C$ (D) $2(\sin x - x \sin \theta) + C$	
36	$\int_{0}^{1} \frac{2x}{5x^2 + 1} dx \text{ is equal to :}$	65/5/3 (1m)
	(A) $\frac{1}{5}\log 6$ (B) $\frac{1}{5}\log 5$	
	(C) $\frac{1}{2}\log 6$ (D) $\frac{1}{2}\log 5$	
37	Let $f'(x) = 3(x^2 + 2x) - \frac{4}{x^3} + 5$, $f(1) = 0$. Then, $f(x)$ is: (A) $x^3 + 3x^2 + \frac{2}{x^2} + 5x + 11$ (B) $x^3 + 3x^2 + \frac{2}{x^2} + 5x - 11$ (C) $x^3 + 3x^2 - \frac{2}{x^2} + 5x - 11$ (D) $x^3 - 3x^2 - \frac{2}{x^2} + 5x - 11$	65/6/1 65/6/2 65/6/3 (1m)
38	$\int \frac{x+5}{(x+6)^2} e^x dx \text{ is equal to :}$ (A) $\log (x+6) + C$ (B) $e^x + C$ (C) $\frac{e^x}{x+6} + C$ (D) $\frac{-1}{(x+6)^2} + C$	65/6/1 65/6/2 65/6/3 (1m)
39	(a) Find: $\int \frac{x^2 + 1}{(x-1)^2 (x+3)} dx$ OR (b) Evaluate:	65/6/1 65/6/2 65/6/3 (5m)
	$\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx$	

$\int \frac{e^{9 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} dx \text{ is equal to :}$	65/7/1 65/7/3 (1m)
(A) $x + C$ (B) $\frac{x^2}{2} + C$	
(A) $x + C$ (B) $\frac{x^2}{2} + C$ (C) $\frac{x^4}{4} + C$ (D) $\frac{x^3}{3} + C$	
For a function f(x), which of the following holds true?	65/7/1
(A) $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$	65/7/2 65/7/3 (1m)
(B) $\int_{-a}^{a} f(x) dx = 0, \text{ if f is an even function}$	
(C) $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, if f is an odd function	
(D) $\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx - \int_{0}^{a} f(2a + x) dx$	
$\int \frac{e^{x}}{\sqrt{4-e^{2x}}} dx \text{ is equal to :}$	65/7/1 65/7/2 (1m)
(A) $\frac{1}{2}\cos^{-1}(e^x) + C$ (B) $\frac{1}{2}\sin^{-1}(e^x) + C$	
(C) $\frac{e^x}{2} + C$ (D) $\sin^{-1}\left(\frac{e^x}{2}\right) + C$	
(a) Find: $\int \frac{x^2 + 1}{(x^2 + 2)(2x^2 + 1)} dx$	65/7/1 (5m)
OR (b) Evaluate:	
$\int_{0}^{x} \frac{x \tan x}{\sec x + \tan x} dx$	
Dece [74] Conveight @/2025/Lity Shows	

44	$\int \frac{a^x}{\sqrt{1-a^{2x}}} dx \text{ is equal to :}$	65/7/2 (1m)
Į.	(A) $\frac{\sin^{-1}(a^{x})}{\log_{e} a} + C$ (B) $\log_{e} (1 - a^{2x}) + C$	
	$(C) \qquad \frac{\cos^{-1}\left(a^{x}\right)}{\log_{e}a} + C \qquad \qquad (D) \qquad \frac{\sin^{-1}\left(a^{x}\right)}{a^{x}} + C$	
45	(a) Find: $\int \frac{x}{(x-1)(x^2+4)} dx$	65/7/2 (5m)
	(b) Evaluate: $\int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$	
46	0	65/7/3
	$\int \frac{e^{-x}}{16 + 9e^{-2x}} dx \text{ is equal to :}$	(1m)
	(A) $\frac{16}{9} \tan^{-1} (e^{-x}) + C$ (B) $-\frac{1}{12} \tan^{-1} \left(\frac{3e^{-x}}{4} \right) + C$	
	(C) $\tan^{-1}\left(\frac{e^{-x}}{4}\right) + C$ (D) $-\frac{1}{3}\tan^{-1}\left(\frac{e^{-x}}{4}\right) + C$	
47	(a) Find:	65/7/3 (5m)
	$\int \frac{3x+1}{(x-2)^2 (x+2)} dx$	
	OR	
	(b) Evaluate:	
	$\int_{0}^{\pi/2} \frac{x}{\cos x + \sin x} dx$	
48	$\int \frac{2x^3}{4+x^8} dx \text{ is equal to}$	65(B) (1m)
	(A) $\frac{1}{4} \tan^{-1} \frac{x^4}{2} + C$ (B) $\frac{1}{2} \tan^{-1} \frac{x^4}{2} + C$	
	(C) $\frac{1}{4} \tan^{-1} \frac{x^4}{4} + C$ (D) $\frac{1}{4} \tan^{-1} x^4 + C$	
Page- [7	75] Copyright-©/2025/Jitu Sharma	

Page- [75]

Copyright-©/2025/Jitu Sharma

49	$\int e^x \cdot \frac{x}{(1+x)^2} dx \text{ is equal to}$	65(B) (1m)
		$e^x \cdot \frac{1}{1+x} + C$
	102	$e^x \cdot \frac{1}{(1+x)^2} + C$
50	Find: $\int \frac{x^2 - x + 1}{(x - 1)(x^2 + 1)} dx$	65(B) (5m)
	OR Evaluate: $\int_{0}^{4} (x + 3-x) dx$	
	Evaluate: $\int_{1}^{\infty} (x + s-x) dx$	

ANSWERS	
(B) 0	
` '	
$\int \frac{x + \sin x}{1 + \cos x} dx$	
$= \int \frac{x + 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}} dx$	
$= \int x \left(\frac{1}{2} \sec^2 \frac{x}{2} \right) dx + \int \tan \frac{x}{2} dx$	
- 10 10 10 10 10 10 10 10 10 10 10 10 10	
$= \frac{1}{2} \int_{0}^{\pi/4} \frac{dx}{\cos^4 x \sqrt{\tan x}} = \frac{1}{2} \int_{0}^{1} \left(\frac{1}{\sqrt{t}} + t^{3/2} \right) dt$	
$= \frac{1}{2} \int_{0}^{2} \frac{(1 + \tan^{2} x)\sec^{2} x}{\sqrt{\tan x}} dx$ $= \frac{1}{2} \int_{0}^{2} \frac{(1 + \tan^{2} x)\sec^{2} x}{\sqrt{\tan x}} dx$ $= \frac{6}{5}$ Put tan $x = t \Rightarrow \sec^{2} x dx = dt$	
	$(A) \frac{-1}{\log 2}$ $\int \frac{x + \sin x}{1 + \cos x} dx$ $= \int \frac{x + 2\sin \frac{x}{2} \cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx$ $= \int x \left(\frac{1}{2} \sec^2 \frac{x}{2}\right) dx + \int \tan \frac{x}{2} dx$ $= x \tan \frac{x}{2} - \int \tan \frac{x}{2} dx + \int \tan \frac{x}{2} dx$ $= x \tan \frac{x}{2} + C$ $\int_0^{x+1} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \qquad \therefore I = \frac{1}{2} \int_0^1 \frac{1 + t^2}{\sqrt{t}} dt$ $= \frac{1}{2} \int_0^{x+1} \frac{dx}{\cos^3 x \sqrt{\tan x}} \qquad = \frac{1}{2} \left[2\sqrt{t} + \frac{2}{5} t^{6/2} \right]_0^1$ $= \frac{1}{2} \int_0^{x+1} \frac{1 + \tan^2 x}{\sqrt{\tan x}} dx \qquad = \frac{6}{2}$

5	$\int \frac{\cos 2x}{\left(\sin x + \cos x\right)^2} dx = \int \frac{\cos^2 x - \sin^2 x}{\left(\sin x + \cos x\right)^2} dx$
	$= \int \frac{\cos x - \sin x}{\sin x + \cos x} dx$
	$= \log \sin x + \cos x + C$
	$I = \int_{0}^{\pi/2} \frac{5\sin x + 3\cos x}{\sin x + \cos x} dx$ -(i)
	$I = \int_{0}^{\pi/2} \frac{5\sin\left(\frac{\pi}{2} - x\right) + 3\cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx = \int_{0}^{\pi/2} \frac{5\cos x + 3\sin x}{\cos x + \sin x} dx \qquad\text{(ii)}$
	Adding (i) and (ii), we get
	$2I = \int_{0}^{\pi/2} 8dx \Rightarrow I = 4x \Big]_{0}^{\frac{\pi}{2}} = 2\pi$
6	(B) $\alpha + 1 - \frac{e}{2}$
7	$\int \frac{2x-1}{(x-1)(x+2)(x-3)} dx = -\frac{1}{6} \int \frac{1}{x-1} dx - \frac{1}{3} \int \frac{1}{x+2} dx + \frac{1}{2} \int \frac{1}{x-3} dx$
	(Using Partial Fraction)
	$= -\frac{1}{6}\log x-1 - \frac{1}{3}\log x+2 + \frac{1}{2}\log x-3 + C$
	$I = \int_{0}^{t} (x-1 + x-2 + x-5) dx$
	$ I = \left[-\int_{0}^{1} (x-1) dx + \int_{1}^{6} (x-1) dx \right] + \left[-\int_{0}^{2} (x-2) dx + \int_{2}^{6} (x-2) dx \right] + \left[-\int_{0}^{6} (x-5) dx \right] $
	$=-\frac{\left(x-1\right)^{2}}{2}\bigg]_{0}^{1}+\frac{\left(x-1\right)^{2}}{2}\bigg]_{1}^{8}-\frac{\left(x-2\right)^{2}}{2}\bigg]_{0}^{2}+\frac{\left(x-2\right)^{2}}{2}\bigg]_{2}^{8}-\frac{\left(x-5\right)^{2}}{2}\bigg]_{0}^{8}$
	$=\frac{17}{2}+\frac{13}{2}+\frac{25}{2}=\frac{55}{2}$
8	(D) $2\int_0^a f(x)dx$
9	Given definite integral = $\int_0^{\frac{\pi}{4}} \sqrt{(\sin x + \cos x)^2} dx$

	$= \int_0^{\frac{\pi}{4}} (\sin x + \cos x) dx$
	$= \left[-\cos x + \sin x\right]_0^{\frac{\pi}{4}}$
	= 1
10	$I = \int \frac{1}{x} \frac{x+a}{\sqrt{x^2 - a^2}} dx = \int \frac{1}{\sqrt{x^2 - a^2}} dx + a \int \frac{1}{x\sqrt{x^2 - a^2}} dx$
11	$= \log \left x + \sqrt{x^2 - a^2} \right + \sec^{-1} \left(\frac{x}{a} \right) + C$ (C) $\tan x - \cot x + C$
12	$I = \int_0^\pi \frac{\sin 2px}{\sin x} dx$
	$= \int_0^\pi \frac{\sin 2p(\pi-x)}{\sin (\pi-x)} dx$
	$I = \int_0^\pi \frac{-\sin 2px}{\sin x} dx$
	Adding, we get
	2I = 0
	∴ I = 0
13	$I = \int_0^a f(x)g(x)dx$
	$= \int_0^a f(a - x)g(a - x)dx$
	$= \int_0^a f(x)[a - g(x)]dx$
	$I = a \int_0^a f(x) dx - \int_0^a f(x) g(x) dx$
	Adding, we get $I = \frac{a}{2} \int_0^a f(x) dx$
14	$\frac{5x}{(x+1)(x^2+9)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+9}$
	$\Rightarrow A = -\frac{1}{2}, B = \frac{1}{2}, C = \frac{9}{2}$

		_
	Given integral	
	$= -\frac{1}{2} \int \frac{1}{x+1} dx + \frac{1}{2} \int \frac{x+9}{x^2+9} dx$	
	$= -\frac{1}{2} \int \frac{1}{x+1} dx + \frac{1}{4} \int \frac{2x}{x^2+9} dx + \frac{1}{4} \int \frac{18}{x^2+9} dx$	
	$= -\frac{1}{2}\log x+1 + \frac{1}{4}\log(x^2+9) + \frac{3}{2}\tan^{-1}\frac{x}{3} + C$	
15	$(C) -3 \le a \le 4$	
16	$I = \int 2x^{3} e^{x^{2}} dx = \int 2xx^{2} e^{x^{2}} dx$	
	$Put x^2 = t \Rightarrow 2xdx = dt$	
	$I = \int te^{t}dt$	
	$= te^t - \int e^t dt$	
	$= te^t - e^t + C$	
	$= e^{x^2}(x^2 - 1) + C$	
17	$\int_{a}^{b} x^{3} dx = 0 \Rightarrow \frac{b^{4} - a^{4}}{4} = 0$	
	$\Rightarrow b^4 - a^4 = 0$	
	$\Rightarrow a = -b (a \neq b)$	
	$\int_{a}^{b} x^{2} dx = \frac{2}{3} \Rightarrow \frac{b^{3} - a^{3}}{3} = \frac{2}{3}$	
	$\Rightarrow b^3 - a^3 = 2$	
	\Rightarrow b ³ = 1	
	\Rightarrow b = 1	
	\Rightarrow b = 1, a = -1	
18	$I = \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx$	
	$=\sqrt{2}\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$	
	$Put sinx - cosx = t \Rightarrow (cosx + sinx)dx = dt$	
	On squaring both sides, we get $1 - \sin 2x = t^2$	
_L		ட

	$I = \sqrt{2} \int \frac{1}{\sqrt{1 - t^2}} dt$	
	$=\sqrt{2}\sin^{-1}t+C$	
	$= \sqrt{2}\sin^{-1}(\sin x - \cos x) + C$	
19	(A) $2(\sin x + x \cos \alpha) + C$	
20	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$	
21	$I = \int_{\pi/2}^{\pi} e^x \left(\frac{1 - \sin x}{1 - \cos x} \right) dx$	
	$= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1 - 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^{2}\frac{x}{2}} \right) dx$	
	$= \int_{\pi/2}^{\pi} e^x \left(\frac{1}{2} \cos ec^2 \frac{x}{2} - \cot \frac{x}{2} \right) dx$	
	$\therefore I = -\left[e^x \cot \frac{x}{2}\right]_{\pi/2}^{\pi}$	
	$= -\left[e^{\pi}\cot\frac{\pi}{2} - e^{\frac{\pi}{2}}\cot\frac{\pi}{4}\right]$	
	$=e^{\frac{\pi}{2}}$	
22	$I = \int \frac{\cos x}{\left(4 + \sin^2 x\right) \left(5 - 4\cos^2 x\right)} dx$	
	$= \int \frac{\cos x}{\left(4 + \sin^2 x\right) \left(1 + 4\sin^2 x\right)} dx$	
	$\sin x = t$ gives	
	$I = \int \frac{dt}{\left(4 + t^2\right)\left(1 + 4t^2\right)}$	
	$= -\frac{1}{15} \int \frac{dt}{4+t^2} + \frac{4}{15} \int \frac{dt}{1+4t^2}$	(: using Partial Fraction)

	1 (+) 2
	$= -\frac{1}{30} \tan^{-1} \left(\frac{t}{2} \right) + \frac{2}{15} \tan^{-1} \left(2t \right) + C$
	$= -\frac{1}{30} \tan^{-1} \left(\frac{\sin x}{2} \right) + \frac{2}{15} \tan^{-1} \left(2 \sin x \right) + C$
	$I = \int_0^\pi \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$
	$=2\int_{0}^{\pi/2} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$
	$=2\int_{0}^{\pi/2} \frac{\sec^{2} x}{a^{2} + b^{2} \tan^{2} x} dx$
	$\tan x = t$ gives
	$I = 2\int_0^\infty \frac{dt}{a^2 + b^2 t^2}$
	$= \frac{2}{b^2} \cdot \frac{b}{a} \tan^{-1} \left(\frac{bt}{a} \right) \Big]_0^{\infty}$
	$=\frac{\pi}{2}$
	ab
23	(D) $e^x \cos x + C$
24	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$
25	$I = \int \frac{\cos x}{1 + \cos x + \sin x} dx$
	$= \int \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} dx = \int \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2\cos \frac{x}{2}} dx$
	$= \frac{1}{2} \int \left(1 - \tan \frac{x}{2} \right) dx \qquad \qquad = \frac{1}{2} \left[x + 2 \log \cos \frac{x}{2} \right] + C$

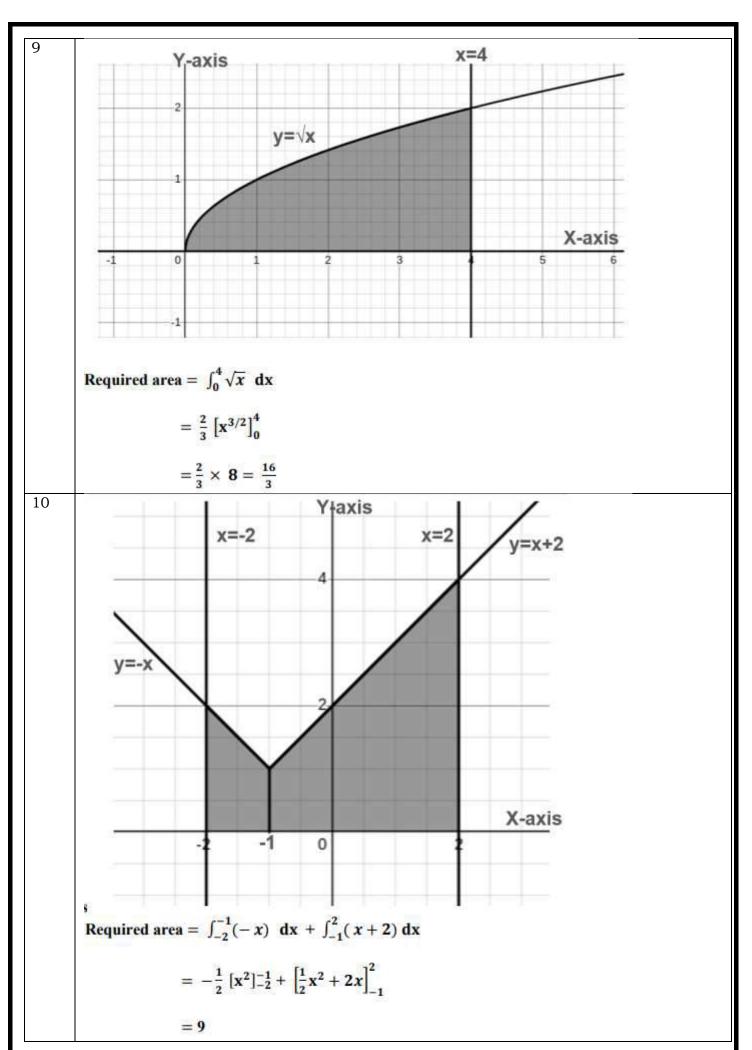
26	$I = \int_{0}^{\pi/4} \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$
	dividing numerator and denominator by $\cos^4 x$,
	$I = \int_0^{\pi/4} \frac{\tan x \sec^2 x}{1 + \tan^4 x} dx$
	Put $\tan^2 x = t \Rightarrow 2 \tan x \sec^2 x dx = dt$
	when $x = 0, t = 0$; when $x = \frac{\pi}{4}, t = 1$
	$\Rightarrow I = \frac{1}{2} \int_{0}^{1} \frac{dt}{1+t^2}$
	$=\frac{1}{2}\left[\tan^{-1}t\right]_0^1$
	$=\frac{\pi}{8}$
	Due to printing error, the given function is not integrable.
	So full marks may be given for every attempt.
27	(C) $\frac{-1}{2x^2}$
28	$I = \int \frac{\sqrt{x}}{1 + \sqrt{x^{3/2}}} dx$
	Put $x^{3/2} = t \Rightarrow \frac{3}{2} \sqrt{x} dx = dt$
	$\Rightarrow I = \frac{2}{3} \int \frac{dt}{1 + \sqrt{t}}$
	Put $\sqrt{t} = z \Rightarrow \frac{1}{2\sqrt{t}} dt = dz$
	$\Rightarrow I = \frac{2}{3} \int \frac{2z}{1+z} dz$
	$=\frac{4}{3}\left[\int 1dz - \int \frac{1}{1+z}dz\right]$
	$=\frac{4}{3}\left[z-\log 1+z \right]+C$
	$= \frac{4}{3} \left[\sqrt{t} - \log \left 1 + \sqrt{t} \right \right] + C$
	$= \frac{4}{3} \left[\sqrt{x^{3/2}} - \log \left 1 + \sqrt{x^{3/2}} \right \right] + C$

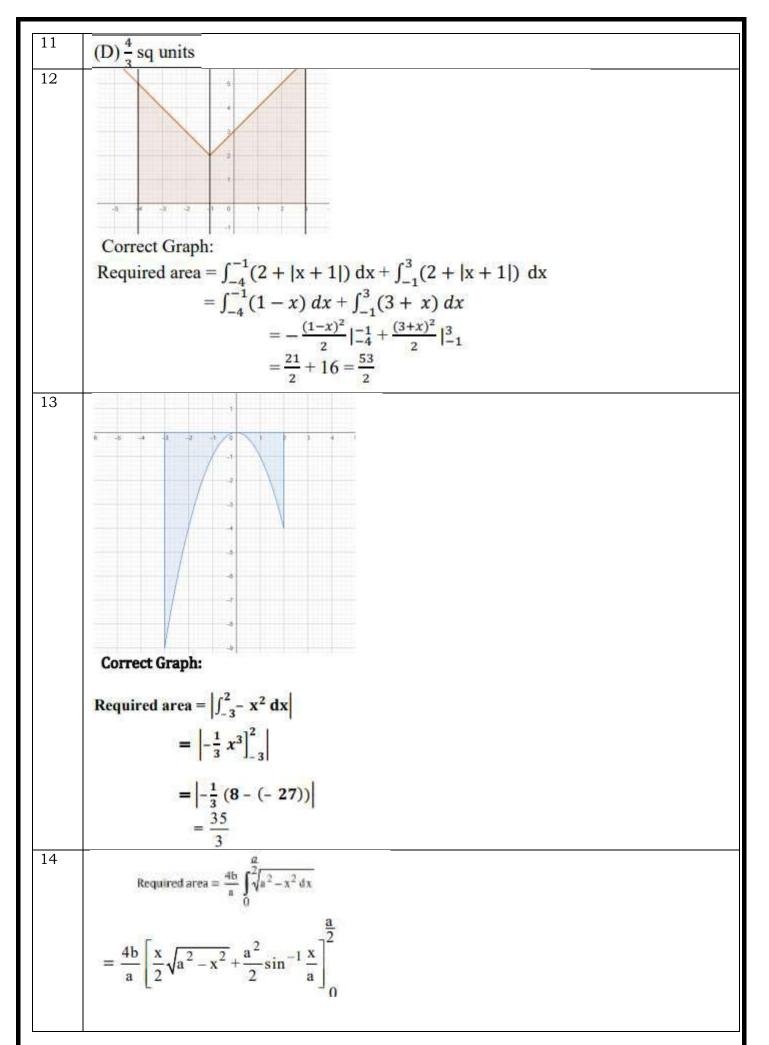
29	
	$I = \int_{0}^{y_{2}} x \cos \pi x dx$
	$= \int_{0}^{1/2} x \cos \pi x dx - \int_{1/2}^{3/2} x \cos \pi x dx \dots (1)$
	$= \int_{0}^{1} x \cos \pi x dx - \int_{0}^{1} x \cos \pi x dx \dots (1)$
	Consider $\int x \cos \pi x dx$
	$= \frac{x \sin \pi x}{\pi} - \int \frac{\sin \pi x}{\pi} dx$
	$= \frac{x \sin \pi x}{\pi} + \frac{\cos \pi x}{\pi^2} \qquad(2)$
	using (2) in (1),
	$\frac{x \sin \pi x}{\pi} + \frac{\cos \pi x}{\pi^2} \bigg]_0^{\nu_2} - \frac{x \sin \pi x}{\pi} + \frac{\cos \pi x}{\pi^2} \bigg]_{1/2}^{3/2}$
	$=\left(\frac{1}{2\pi} - \frac{1}{\pi^2}\right) - \left(-\frac{3}{2\pi} - \frac{1}{2\pi}\right)$
	$=\frac{5}{2\pi}-\frac{1}{\pi^2}$
	$I = \int \frac{dx}{\sin x + \sin 2x}$
	$= \int \frac{dx}{\sin x \left(1 + 2\cos x\right)}$
	$= \int \frac{\sin x}{\sin^2 x (1 + 2\cos x)} dx$
	$= \int \frac{\sin x}{(1 - \cos x)(1 + \cos x)(1 + 2\cos x)} dx$
	$Put\cos x = t \Rightarrow \sin x dx = dt$
	$I = -\int \frac{dt}{(1-t)(1+t)(1+2t)}$
	$= -\frac{1}{6} \int \frac{dt}{1-t} + \frac{1}{2} \int \frac{dt}{1+t} - \frac{4}{3} \int \frac{dt}{1+2t}$
	$= \frac{1}{6}\log 1-t + \frac{1}{2}\log 1+t - \frac{2}{3}\log 1+2t + C$
	$= \frac{1}{6}\log 1 - \cos x + \frac{1}{2}\log 1 + \cos x - \frac{2}{3}\log 1 + 2\cos x + C$
30	(B) $2 \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) + C$
31	(C) e - 1

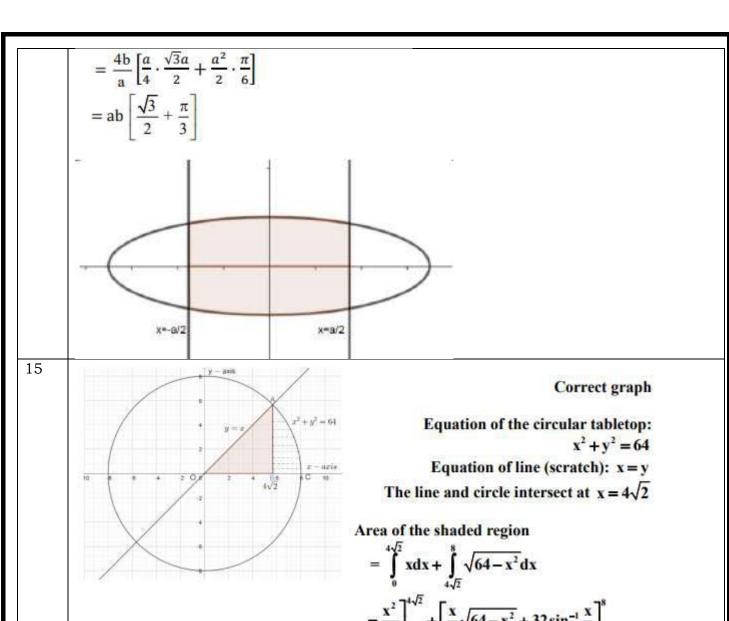
32	(a) Let $I = \int \frac{2x}{(x^2+3)(x^2-5)} dx$
	$Put x^2 = t \Rightarrow 2x. dx = dt$
	$\Longrightarrow I = \int \frac{dt}{(t+3)(t-5)}$
	$= \int \left(-\frac{1}{8(t+3)} + \frac{1}{8(t-5)} \right) dt$
	$= \frac{1}{8}[\log t - 5 - \log t + 3] + c$
	$=\frac{1}{8}\log\left \frac{x^2-5}{x^2+3}\right +c$
	OR
	(b) $\int_1^4 (x-2 + x-4) dx$
	$= \int_{1}^{2} (2-x) dx + \int_{2}^{4} (x-2) dx - \int_{1}^{4} (x-4) dx$
	$= \left[\frac{(2-x)^2}{-2} \right]_1^2 + \left[\frac{(x-2)^2}{2} \right]_2^4 - \left[\frac{(x-4)^2}{2} \right]_1^4$
	$= \frac{1}{2} + 2 + \frac{9}{2} = 7$
33	$(B) - (\cot x + \tan x) + C$
34	(B) $\frac{1}{2}$
35	$(A) 2 (\sin x + x \cos \theta) + C$
36	$(A) \frac{1}{5} \log 6$
37	(B) $x^3 + 3x^2 + \frac{2}{x^2} + 5x - 11$
38	$(C)\frac{e^{x}}{x+6}+C$
39	(a) $\frac{x^{2}+1}{(x-1)^{2}(x+3)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x+3} = \frac{3/8}{x-1} + \frac{1/2}{(x-1)^{2}} + \frac{5/8}{x+3}$ $I = \frac{3}{8} \log x-1 - \frac{1}{2(x-1)} + \frac{5}{8} \log x+3 + C$ OR (b) Let $I = \int_{0}^{\pi} \frac{x}{\sin x + \cos x} dx$ $I = \int_{0}^{\pi} \frac{\frac{\pi}{2} - x}{\cos x + \sin x} dx \text{using property}$ $2I = \int_{0}^{\pi} \frac{\frac{\pi}{2}}{\sin x + \cos x} dx$ $= \frac{\pi}{2} \frac{1}{\sqrt{2}} \int_{0}^{\pi} \frac{1}{\sin x + \cos x} dx$ $2I = \frac{\pi}{2\sqrt{2}} \log \csc \left(\frac{\pi}{4} + x\right) - \cot \left(\frac{\pi}{4} + x\right) _{0}^{\frac{\pi}{2}}$ $I = \frac{\pi}{4\sqrt{2}} \log \frac{\sqrt{2}+1}{\sqrt{2}-1}$

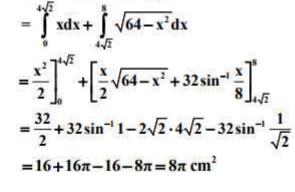
40	$(C) \frac{x^4}{4} + C$
41	$(A) \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$
42	(D) $\sin^{-1}\left(\frac{e^x}{2}\right) + C$
43	(a) $\int \frac{x^2+1}{(x^2+2)(2x^2+1)} dx = \frac{1}{3} \int \frac{1}{x^2+2} dx + \frac{1}{3} \int \frac{1}{2x^2+1} dx$ (Using Partial Fractions)
	$= \frac{1}{3} \cdot \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) + \frac{1}{3} \cdot \frac{1}{\sqrt{2}} \tan^{-1} \left(\sqrt{2}x \right) + C$
	or = $\frac{1}{3\sqrt{2}} \left(\tan^{-1} \frac{x}{\sqrt{2}} + \tan^{-1} \sqrt{2}x \right) + C$
	(b) Let $I = \int \frac{x \tan x}{\sec x + \tan x} dx$ — (i)
	$\Rightarrow 1 = \int_{0}^{\pi} \frac{(\pi - x)\tan x}{\sec x + \tan x} dx \qquad -(ii)$
	Adding (i) & (ii), we get
	$2I = \pi \int_{-\infty}^{\infty} \frac{\tan x}{\sec x + \tan x} dx \Rightarrow 2I = \pi \int_{-\infty}^{\infty} \frac{\tan x (\sec x - \tan x)}{\sec^2 x - \tan^2 x} dx$
	$=\pi\int_{0}^{\pi}\left(\sec x\tan x-\sec^{2}x+1\right)dx$
	$=\pi(\sec x - \tan x + x)]_0^T$
	$= \pi(-1+\pi-1) = \pi(\pi-2)$ $\therefore 1 = \frac{\pi}{2}(\pi-2) \text{ or } \pi\left(\frac{\pi}{2}-1\right)$
44	$\sin^{-1}(a^x)$
45	(a) $\int \frac{x}{(x-1)(x^2+4)} dx = \frac{1}{5} \int \frac{1}{x-1} dx - \frac{1}{10} \int \frac{2x}{x^2+4} dx + \frac{4}{5} \int \frac{1}{x^2+4} dx$, (By Partial Fractions)
	$= \frac{1}{5}\log x-1 - \frac{1}{10}\log(x^2+4) + \frac{2}{5}\tan^{-1}\frac{x}{2} + C$
	OR
	(b) Let $I = \int_{0}^{x} \frac{x \sin x}{1 + \cos^{2} x} dx \implies I = \int_{0}^{x} \frac{(\pi - x)\sin x}{1 + \cos^{2} x} dx$
	$\Rightarrow 2I = \pi \int_{-1}^{2} \frac{\sin x}{1 + \cos^{2} x} dx$
	Substituting, $\cos x = t \cdot \sin x dx = -dt$, we get,
	$I = \frac{\pi^{-1}}{2} \int_{1}^{1} \frac{-dt}{1+t^{2}} = -\frac{\pi}{2} \tan^{-1} t \Big]_{1}^{-1}$
	$=-\frac{\pi}{2}\left(-\frac{\pi}{4}-\frac{\pi}{4}\right)=\frac{\pi^{2}}{4}$

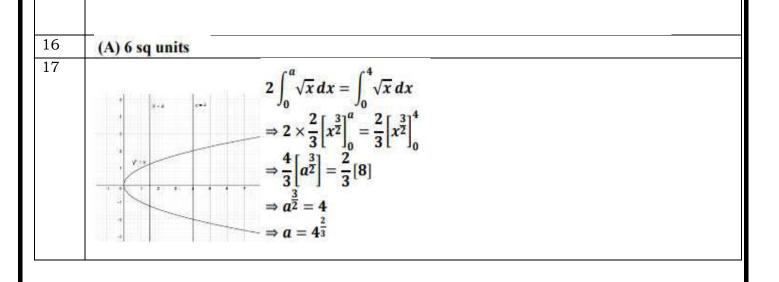
46	(B) $-\frac{1}{12} \tan^{-1} \left(\frac{3e^{-x}}{4} \right) + C$
47	(a) Using Partial fractions,
	$\int \frac{3x+1}{\left(x-2\right)^{2}\left(x+2\right)} dx = \frac{5}{16} \int \frac{1}{x-2} dx + \frac{7}{4} \int \frac{1}{\left(x-2\right)^{2}} dx - \frac{5}{16} \int \frac{1}{x+2} dx$
	$= \frac{5}{16} \log x-2 - \frac{7}{4(x-2)} - \frac{5}{16} \log x+2 + C$
	or = $\frac{5}{16} \log \left \frac{x-2}{x+2} \right - \frac{7}{4(x-2)} + C$
	Or
	(b) Let $I = \int_0^{\pi/2} \frac{x}{\cos x + \sin x} dx \Rightarrow I = \int_0^{\pi/2} \frac{\frac{\pi}{2} - x}{\sin x + \cos x} dx \Rightarrow 2I = \frac{\pi}{2} \int_0^{\pi/2} \frac{1}{\cos x + \sin x} dx$
	$\Rightarrow I = \frac{\pi}{4\sqrt{2}} \int_{0}^{\pi/2} \frac{1}{\cos\left(x - \frac{\pi}{4}\right)} dx = \frac{\pi}{4\sqrt{2}} \int_{0}^{\pi/2} \sec\left(x - \frac{\pi}{4}\right) dx$
	$\Rightarrow I = \frac{\pi}{4\sqrt{2}} \log \left[\sec \left(x - \frac{\pi}{4} \right) + \tan \left(x - \frac{\pi}{4} \right) \right] \Big]_0^{\frac{\pi}{2}} = \frac{\pi}{4\sqrt{2}} \left[\log \left(\sqrt{2} + 1 \right) - \log \left(\sqrt{2} - 1 \right) \right]$
	Or, $I = \frac{\pi}{4\sqrt{2}} \log \left(\frac{\sqrt{2}+1}{\sqrt{2}-1} \right)$
48	(A) $\frac{1}{4}tan^{-1}\frac{x^4}{2} + C$
49	$(B) e^x \cdot \frac{1}{1+x} + C$
50	(a) $\int \frac{x^2 - x + 1}{(x - 1)(x^2 + 1)} dx$
	Let $\frac{x^2-x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$
	Getting $A = \frac{1}{2}, B = \frac{1}{2}, C = \frac{-1}{2}$
	$\frac{1}{2} \int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{x}{x^2+1} dx - \frac{1}{2} \int \frac{1}{x^2+1} dx$
	$\frac{-1}{2}log x-1 + \frac{1}{4}log x^2 + 1 - \frac{1}{2}tan^{-1}x + C$
	(b) $\int_{1}^{4} (x + 3 - x) dx$
	$\int_{1}^{4} x dx + \int_{1}^{4} 3 - x dx$
	$\int_{1}^{4} x dx + \int_{1}^{3} (3 - x) dx - \int_{3}^{4} (3 - x) dx$
	J ₁ J ₃ = 10
L L	<u> </u>


	CHAPTER-8 APPLICATION OF INTEGRALS		
Q.		Code and Marks	
1	The area of the shaded region bounded by the curves $y^2 = x$, $x = 4$ and the x -axis is given by $ \begin{array}{cccccccccccccccccccccccccccccccccc$	65/1/1 65/1/2 65/1/3 1M	
	(C) $2\int_{0}^{4}\sqrt{x} dx$ (D) $\int_{0}^{4}\sqrt{x} dx$		
2	Sketch the graph of $y = x + 3 $ and find the area of the region enclosed by the curve, x-axis, between $x = -6$ and $x = 0$, using integration.	65/1/1 65/1/2 65/1/3 3M	
3	The area of the shaded region (figure) represented by the curves $y=x^2,0\leq x\leq 2$ and y-axis is given by		
	(A) $\int_{0}^{2} x^{2} dx$ (B) $\int_{0}^{2} \sqrt{y} dy$ (C) $\int_{0}^{4} x^{2} dx$ (D) $\int_{0}^{4} \sqrt{y} dy$		
4	Using integration, find the area of the region bounded by the line $y = 5x + 2$, the $x - axis$ and the ordinates $x = -2$ and $x = 2$.	65/2/1 65/2/2 65/2/3 5M	
5	The area of the region enclosed by the curve $y = \sqrt{x}$ and the lines $x = 0$ and $x = 4$ and x-axis is:	65/4/1 65/4/2 65/4/3	
	(A) $\frac{16}{9}$ sq. units (B) $\frac{32}{9}$ sq. units (C) $\frac{16}{3}$ sq. units (D) $\frac{32}{3}$ sq. units	1M	


6	Calculate the area of the region bounded by the curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the	65/4/1 65/4/2 65/4/3
	x-axis using integration.	2M
7	The area of the region enclosed between the curve $y = x x $, x-axis, $x = -2$	65/5/1 65/5/2
	and x = 2 is :	65/5/3
	(A) $\frac{8}{3}$ (B) $\frac{16}{3}$	1M
	(C) 0 (D) 8	
8	Sketch a graph of $y = x^2$. Using integration, find the area of the region	65/5/1
	bounded by $y = 9$, $x = 0$ and $y = x^2$.	5M
9	Draw a rough sketch of the curve $y = \sqrt{x}$. Using integration, find the	65/5/2
	area of the region bounded by the curve $y = \sqrt{x}$, $x = 4$ and x-axis, in the	5M
	first quadrant.	
10	In a rough sketch, mark the region bounded by $y = 1 + x + 1 $, $x = -2$,	65/5/3
	x = 2 and $y = 0$. Using integration, find the area of the marked region.	5M
11	The area of the region bounded by the curve $y^2 = x$ between $x = 0$ and	65/6/1
	x = 1 is:	65/6/2 65/6/3
	(A) $\frac{3}{2}$ sq units (B) $\frac{2}{3}$ sq units	1M
	(C) 3 sq units (D) $\frac{4}{3}$ sq units	
12	Draw a rough sketch for the curve $y = 2 + x + 1 $. Using integration, find	65/6/1
	the area of the region bounded by the curve $y = 2 + x + 1 $, $x = -4$, $x = 3$	5M
	and $y = 0$.	
13	Use integration to find the area of the region enclosed by curve $y = -x^2$	65/6/2
	and the straight lines $x = -3$, $x = 2$ and $y = 0$. Sketch a rough figure to	5M
	illustrate the bounded region.	
14	Using integration, find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ bounded	65/6/3 5M
	between the lines $x = -\frac{a}{2}$ to $x = \frac{a}{2}$.	
15	A woman discovered a scratch along a straight line on a circular table top	65/7/1 65/7/2
	of radius 8 cm. She divided the table top into 4 equal quadrants and	65/7/3
	discovered the scratch passing through the origin inclined at an angle $\frac{\pi}{4}$	5M
	anticlockwise along the positive direction of x-axis. Find the area of the	
	region enclosed by the x-axis, the scratch and the circular table top in the	
	first quadrant, using integration.	
		


16		area of the region be x-axis is	ounded by tl	ne lines $y = x + 1$, $x = 1$, $x = 3$	65(B) 1M
	(A)	6 sq units	(B)	8 sq units	
	(C)	7.5 sq units	(D)	2 sq units	
17		region enclosed be al parts by the line		y^2 and $x = 4$ is divided into two the value of a.	65(B) 5M


ANSWERS
(D) $\int_{0}^{4} \sqrt{x} dx$
Required Area $= \int_{-6}^{6} y dx$ $= 2 \int_{-3}^{6} (x+3) dx$ $= 2 \left[\frac{(x+3)^2}{2} \right]_{-3}^{6}$
$=2\left[\frac{(x+y)}{2}\right]_{3}$ $=9$ (D) $\int_{0}^{4} \sqrt{y} dy$
14 5x + 2 15 16 16 17 17 17 18 10 10 11 11 11 11 11 11 11 11 11 11 11


	The required area $ = \left \int_{-z}^{-\frac{2}{5}} (5x+2) dx \right + \int_{-\frac{2}{5}}^{2} (5x+2) dx $ $ = \left \left[\frac{(5x+2)^2}{10} \right]_{-z}^{-\frac{2}{5}} \right + \left[\frac{(5x+2)^2}{10} \right]_{-\frac{2}{5}}^{2} $ $ = \frac{64}{10} + \frac{144}{10} = \frac{104}{5} $
5	(C) $\frac{16}{3}$ sq. units
6	$A = 2 \times \frac{2}{3} \int_{0}^{3} \sqrt{9 - x^{2}} dx$ $= \frac{4}{3} \left[\frac{x}{2} \sqrt{9 - x^{2}} + \frac{9}{2} \sin^{-1} \left(\frac{x}{3} \right) \right]_{0}^{3}$ $= \frac{4}{3} \left[\left(0 + \frac{9}{2} \sin^{-1} 1 \right) - 0 \right]$ $= 3\pi$
7	(B) $\frac{16}{3}$
8	Required area = $\int_0^9 \sqrt{y} dy$ = $\frac{2}{3} [y^{3/2}]_0^9$ = 18 Note: If area is found in second quadrant, may be considered.
	The state of the s

	CHAPTER-9 DIFFERENTIAL EQUATION	
Q.		Code
		and
1	Which follows in the following for the first of the first	Marks 65/1/1
-	Which of the following is <u>not</u> a homogeneous function of x and y ?	65/1/2
	(A) $y^2 - xy$ (B) $x - 3y$	65/1/3
	(C) $\sin^2 \frac{y}{x} + \frac{y}{x}$ (D) $\tan x - \sec y$	1M
2	The integrating factor of differential equation $(x + 2y^3) \frac{dy}{dx} = 2y$ is	65/1/1
	No.	1M
	(A) $e^{\frac{y^2}{2}}$ (B) $\frac{1}{\sqrt{y}}$	
	√y	
	(C) $\frac{1}{2}$ (D) $e^{-\frac{1}{y^2}}$	
	(C) $\frac{1}{y^2}$ (D) $e^{-\frac{1}{y^2}}$	
3	The integrating feator of the differential equation $\frac{dy}{dy} + y = \frac{1+y}{1+y}$ is	65/1/2
	The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{x}$ is	1M
	72.0	
	(A) xe^x (B) $\frac{e^x}{x}$	
	(D) x	
	1	
	(C) $\frac{x}{}$ (D) xe^{x}	
	e ^x	
4	[(4-1)2] ⁵ 42	65/1/3
	The order and degree of differential function $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^5 = \frac{d^2y}{dx^2}$ are	1M
	$\left[\begin{array}{c} (\mathrm{d}x) \end{array}\right] \ \mathrm{d}x^2$	
	(A) order 1, degree 1 (B) order 1, degree 2	
	(C) order 2, degree 1 (D) order 2, degree 2	
5	If p and q are respectively the order and degree of the differential equation	65/2/1
	$\frac{d}{dx} \left(\frac{dy}{dx} \right)^3 = 0$, then $(p - q)$ is	65/2/2 65/2/3
	dx(dx) = 0, then $(p-q)$ is	
	(A) 0 (B) 1	1M
	(C) 2 (D) 3	
6	() G 1 11 1100 (1 1 11 0 0 1 0 dy 0 1 (1) 0	65/2/
	(a) Solve the differential equation $2(y + 3) - xy \frac{dy}{dx} = 0$; given $y(1) = -2$.	65/2/2 65/2/3
	OR	05/2/3
	(b) Solve the following differential equation:	
	The second secon	3M
	$(1+x^2)\frac{dy}{dx} + 2xy = 4x^2.$	
	u.i	

7	The order and degree of the differential equation	65/4/1
	$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \sin\left(\frac{dy}{dx}\right) \text{ are } :$	1M
	(A) order 2, degree 2 (B) order 2, degree 1	
	(C) order 2, degree not defined (D) order 1, degree not defined	
8	The integrating factor of the differential equation	65/4/2
	$\frac{dy}{dx} + y \tan x - \sec x = 0 \text{ is :}$	1M
	(A) $-\cos x$ (B) $\sec x$	
	(C) log sec x (D) e ^{sec x}	
9	The solution of the differential equation $\frac{dy}{dx} = \frac{-x}{y}$ represents family of :	65/4/3 1M
	(A) parabolas (B) circles	
	(C) ellipses (D) hyperbolas	
10	During a heavy gaming session, the temperature of a student's laptop processor increases significantly. After the session, the processor begins to cool down, and the rate of cooling is proportional to the difference between the processor's temperature and the room temperature (25°C). Initially the processor's temperature is 85°C. The rate of cooling is defined by the equation $\frac{d}{dt}(T(t)) = -k(T(t)-25)$, where $T(t)$ represents the temperature of the processor at time t (in minutes) and k is a constant.	65/4/1 65/4/2 65/4/3 4M
	Based on the above information, answer the following questions:	
	(i) Find the expression for temperature of processor, $T(t)$ given that $T(0) = 85^{\circ}C.$	3
	(ii) How long will it take for the processor's temperature to reach 40°C ? Given that $k = 0.03$, $\log_e 4 = 1.3863$.	â

11	The sum of the order and degree of the differential equation	65/5/1
	$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \frac{d^2y}{dx^2} \text{ is :}$	65/5/2 65/5/3
	(A) 2 (B) $\frac{5}{2}$ (C) 3 (D) 4	1M
12	Find the particular solution of the differential equation	65/5/1
	$\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0$	ЗМ
	given that $y = \frac{\pi}{4}$, when $x = 1$.	
13	The integrating factor of the differential equation	65/5/2
	$\frac{dx}{dy} = \frac{x \log x}{\frac{2}{x} \log x - y} \text{ is :}$	1M
	(A) $\frac{1}{8x}$ (B) e	
	(C) $e^{\log x}$ (D) $\log x$	
14	Solve the differential equation	65/5/3 3M
	$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x.$	Sivi
15	The integrating factor of the differential equation	65/5/3
	$\frac{dx}{dy} = \frac{-(1+\sin x)}{x+y\cos x} \text{ is :}$	1M
	(A) $\log \cos x$ (B) $1 + \sin x$	
	(C) $e^{(1+\sin x)}$ (D) $e^{\log \cos x}$	
16	Solve the differential equation	65/5/3
	$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x.$	3M
17	The order and degree of the following differential equation are, respectively:	65/6/1 1M
	$-\frac{d^4y}{dx^4} + 2e^{dy/dx} + y^2 = 0$	1111
	(A) -4, 1 (B) 4, not defined (C) 1, 1 (D) 4, 1	
18	The solution for the differential equation $\log \left(\frac{dy}{dx}\right) = 3x + 4y$ is:	65/6/1 65/6/2 65/6/3
	(A) $3e^{4y} + 4e^{-3x} + C = 0$ (B) $e^{3x+4y} + C = 0$ (C) $3e^{-3y} + 4e^{4x} + 12C = 0$ (D) $3e^{-4y} + 4e^{3x} + 12C = 0$	1M

19	(a) Solve the differential equation: $x^2y dx - (x^3 + y^3) dy = 0$.	65/6/1 65/6/2
	OR	65/6/3
	(b) Solve the differential equation $(1 + x^2) \frac{dy}{dx} + 2xy - 4x^2 = 0$ subject	5M
20	to initial condition y(0) = 0. The order and degree of the differential counties	65/6/2
	The order and degree of the differential equation $\frac{d^2y}{dx^2} + 4\left(\frac{dy}{dx}\right) = x \log\left(\frac{d^2y}{dx^2}\right) \text{ are respectively :}$	1M
	(A) 0, 3 (B) 2, 1	
	(C) 2, not defined (D) 1, not defined	
21	The order and degree of the differential equation $\left[\frac{d^2y}{dx^2} - 1\right]^2 = \frac{dy}{dx}$ are, respectively: (A) 2,2 (B) 2, not defined	65/6/3 1M
	(C) 1, 2 (D) 1, not defined	
22	Solve the differential equation $\frac{dy}{dx} = \cos x - 2y$.	65/7/1 5M
	Camphor is a waxy, colourless solid with strong aroma that evaporates through the process of sublimation, if left in the open at room temperature. (Cylindrical-shaped Camphor tablets) A cylindrical camphor tablet whose height is equal to its radius (r) evaporates when exposed to air such that the rate of reduction of its volume is proportional to its total surface area. Thus, $\frac{dV}{dt} = kS$ is the differential equation, where V is the volume, S is the surface area and t is the time in hours. Based upon the above information, answer the following questions: (i) Write the order and degree of the given differential equation. (ii) Substituting V = πr³ and S = 2πr², we get the differential equation $\frac{dr}{dt} = \frac{2}{3}k$. Solve it, given that r(0) = 5 mm.	65/7/2 65/7/3 4M

	or	
	(iii) (b) If it is given that $r=1$ mm when $t=1$ hour, find the value of k. Hence, find t for $r=0$ mm.	
24	Solve the differential equation $(x^2 + y^2) dx + xy dy = 0$, $y(1) = 1$.	65/7/2 5M
25	Solve the differential equation $(x - \sin y) dy + (\tan y) dx = 0$, given $y(0) = 0$.	65/7/3 5M
26	The integrating factor for solving the differential equation	65(B)
	$x \cdot \frac{\mathrm{dy}}{\mathrm{dx}} - y = 2x^2$ is	1M
	(A) x (B) $\frac{1}{x}$	
	(C) e^{-x} (D) $-\log x$	
27	Assertion (A) : $x^2dy = (2xy + y^2)dx$ is a homogeneous differential equation.	65(B) 1M
	Reason (R) : A differential equation of the form	1141
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{F}\left(\frac{y}{x}\right)$ is a homogeneous differential equation.	
28	(a) Find the particular solution of the differential equation,	65(B)
	$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that $y = 1$ when $x = 0$.	3M
	OR	
	(b) Solve the differential equation: $2xy\frac{dy}{dx} = x^2 + 3y^2$.	

	ANSWERS
1	(D) $\tan x - \sec y$
2	(B) $\frac{1}{\sqrt{y}}$
3	(B) $\frac{e^x}{x}$
4	(C) order 2, degree 1
5	(B) 1
6 (a)	Given differential equation can be written as $\frac{y}{y+3} dy = \frac{2}{x} dx$ $\Rightarrow \int \left(1 - \frac{3}{y+3}\right) dy = 2 \int \frac{1}{x} dx$

	$\Rightarrow y - 3log y + 3 = 2log x + C$
	$y = -2$, when $x = 1 \Rightarrow C = -2$
	Hence, the required particular solution is
(b)	$\Rightarrow y - 3log y + 3 = 2log x - 2$
	OR
	Given differential equation can be written as
	$\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{4x^2}{1+x^2}$, which is linear in y.
	I.F. = $e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1+x^2)} = 1 + x^2$
	The solution is given by
	$y(1+x^2) = \int 4x^2 dx$
	$y(1+x^2) = \int 4x^2 dx$ $\Rightarrow y(1+x^2) = \frac{4}{3}x^3 + C$
	or $y = \frac{4x^3}{3(1+x^2)} + C\frac{1}{(1+x^2)}$, which is the required general solution
7	(C) order 2, degree not defined
8	(B) sec x
9	(B) circles
10	$(i)\frac{dT}{dt} = -k(T-25)$
	$\Rightarrow \frac{dT}{T-25} = -k dt$
	$\Rightarrow \int \frac{dT}{T - 25} = -k \int dt$
	$\Rightarrow \log T-25 = -kt + C$ (a)
	When $t = 0, T = 85$
	$\Rightarrow \log 60 = C$
	Using in equation (a), $\log T-25 = -kt + \log 60$ (b)
	(ii) When $k = 0.03, \log T - 25 = -0.03t + \log 60$
	$\Rightarrow \log \left \frac{T - 25}{60} \right = -0.03t$
	$\Rightarrow T - 25 = 60.e^{-0.03t}$
	When $T=40$, $t=t_1$

	$\Rightarrow \frac{15}{60} = e^{-0.03t_1}$
	\$55.
	$\Rightarrow e^{-0.03t_1} = \frac{1}{4} \Rightarrow -0.03t_1 = -\log 4$
	$\Rightarrow t_1 = \frac{\log 4}{0.03} = \frac{1.3863}{0.03} = 46.21 \text{m}$
11	(C) 3
12	$\left[x.\sin^2\frac{y}{x}-y\right].dx+x.dy=0$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} - \sin^2 \frac{y}{x}$
	Put $y = vx \implies \frac{dy}{dx} = x \frac{dv}{dx} + v$
	$\therefore x \frac{dv}{dx} + v = v - \sin^2 v$
	$\Rightarrow -\int \mathbf{cosec^2 v} \mathbf{dv} = \int \frac{\mathbf{dx}}{\mathbf{x}}$
	\Rightarrow cot $\mathbf{v} = \log \mathbf{x} + \mathbf{c}$
	\Rightarrow cot $\frac{y}{x} = \log x + c$
	$x=1, y=\frac{\pi}{4} \implies c=1$
	$\Rightarrow \cot \frac{y}{x} = \log x + 1$
13	(D) log x
14	$\Rightarrow \frac{dy}{dx} = \frac{y}{x} + \sec \frac{y}{x}$
	Put y = vx
	$\Rightarrow \frac{dy}{dx} = \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}}$
	$\Rightarrow \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}} = \mathbf{v} + \mathbf{sec} \mathbf{v}$
	$\Rightarrow \int \cos v dv = \int \frac{dx}{x}$
	$\Rightarrow \sin v = \log x + c$
	$\Rightarrow \sin \frac{y}{x} = \log x + c$
15	(B) 1 + sin x
16	$\Rightarrow \frac{dy}{dx} = \frac{y}{x} + \sec \frac{y}{x}$
	$\mathbf{Put}\;\mathbf{y}=\mathbf{v}\mathbf{x}$
	$\Rightarrow \frac{dy}{dx} = \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}}$
	$\Rightarrow \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{v}} = \mathbf{v} + \mathbf{sec} \mathbf{v}$
	$\Rightarrow v + x \frac{1}{dx} = v + \sec v$
1	

	$\Rightarrow \int \cos v dv = \int \frac{dx}{x}$
	$\Rightarrow \sin v = \log x + c$
	$\Rightarrow \sin \frac{y}{x} = \log x + c$
17	(B) 4, not defined
18	(D) $3e^{-4y} + 4e^{3x} + 12C = 0$
19	(a) Given differential equation can be written as $\frac{dy}{dx} = \frac{yx^2}{x^3 + y^3}$ Put $y = vx$, so $\frac{dv}{dx} = v + x\frac{dv}{dx}$ Therefore, $v + x\frac{dv}{dx} = \frac{vx^3}{x^3 + v^3x^3} = \frac{v}{1 + v^3}$ $x\frac{dv}{dx} = \frac{-v^4}{1 + v^3}$ $(\frac{1}{v^4} + \frac{1}{v})dv = \frac{-dx}{x}$ Integrating we get
	$\frac{-1}{3v^3} + \log v = -\log x + C$ $\frac{-x^3}{3y^3} + \log y = C$ OR (b) Given D.E. is $\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{4x^2}{1+x^2}$ Integrating factor is $e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1+x^2)} = (1+x^2)$
	Solution is $y(1 + x^2) = \int 4x^2 dx + C$ $y(1 + x^2) = \frac{4x^3}{3} + C$ $y(0) = 0$ gives $C = 0$, hence solution is $y(1 + x^2) = \frac{4x^3}{3}$
20	(C)2, not defined
21 22	(A) 2, 2 The given differential equation can be written as:
	$\frac{dy}{dx} + 2y = \cos x$, Taking $P = 2, Q = \cos x$
	ux
	Integrating factor is given by, $I = e^{\int 2dx} = e^{2x}$
	\therefore The solution is, $y \cdot e^{2x} = \int e^{2x} \cos x dx$
	Let, $I_{1} = \int \cos x \cdot e^{2x} dx = \cos x \frac{e^{2x}}{2} - \int (-\sin x) \frac{e^{2x}}{2} dx$ $= \frac{e^{2x} \cos x}{2} + \frac{1}{2} \left[\sin x \cdot \frac{e^{2x}}{2} - \int \cos x \cdot \frac{e^{2x}}{2} dx \right]$ $\Rightarrow I_{1} = \frac{e^{2x} \cos x}{2} + \frac{e^{2x} \sin x}{4} - \frac{1}{4} I_{1} \Rightarrow I_{1} = \frac{e^{2x}}{5} (2 \cos x + \sin x)$

$ \begin{array}{c} \therefore \text{ The solution of the differential equation is} \\ y e^{2x} = \frac{e^{2x}}{5} \left(2\cos x + \sin x\right) + C \implies y = \frac{1}{5} \left(2\cos x + \sin x\right) + Ce^{-2x} \end{array} \\ \hline (i) \text{ Order } = 1, \text{ Degree } = 1 \\ \hline (ii) \text{ Separating the variable and integrating, } \int dr = \frac{2k}{3} \int dt \implies r = \frac{2}{3}kt + C \\ \text{ Putting } t = 0, r = 5, \text{ we get } C = 5 \\ r = \frac{2}{3}kt + 5 \\ \hline (iii) \text{ (a) Putting } r = 3, t = 1, \ 3 = \frac{2}{3}k(1) + 5 \implies k = -3 \\ r = -2t + 5, \text{ For } r = 0, \ t = \frac{5}{2}\text{ hours or } 2.5 \text{ hours } OR \\ \hline (iii) \text{ (b) Putting } r = 1, t = 1, \ 1 = \frac{2}{3}k + 5 \implies k = -6 \\ \therefore \ r = -4t + 5, \text{ For } r = 0, \ t = \frac{5}{4}\text{ hours or } 1.25\text{ hours} \\ \hline 24 \\ \hline \frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{x}}, \text{ Put } y = vx, \ \frac{dy}{dx} = v + x \frac{dv}{dx} \\ \Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \implies x \frac{dv}{dx} = -\frac{1 + 2v^2}{v} \\ \Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx \\ \Rightarrow \frac{1}{4} \log\left(1 + 2v^2\right) = -\log x + \log C \\ \Rightarrow \log\left(1 + 2v^2\right) = \log\frac{C^4}{x^4} \implies 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4 \\ \text{ For } x = 1, y = 1, D = 3, \\ \therefore \text{ The solution of the differential equation is, } \left(2y^2 + x^2\right)x^2 = 3 \\ \hline \text{The differential equation can be written as:} \\ \frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation} \\ \text{Here, } P = \cot y, \ Q = \cos y, \text{ I.F. (Integrating Factor)} = e^{\int \cot y dy} = e^{\log dxy} = \sin y \\ \text{The solution is, } x(\sin y) = \int \cos y \cdot \sin y dy \\ \hline \end{array}$		
(ii) Order = 1, Degree = 1 (ii) Separating the variable and integrating, $\int dr = \frac{2k}{3} \int dt \Rightarrow r = \frac{2}{3}kt + C$ Putting $t = 0, r = 5$, we get $C = 5$ $r = \frac{2}{3}kt + 5$ (iii) (a) Putting $r = 3, t = 1, 3 = \frac{2}{3}k(1) + 5 \Rightarrow k = -3$ $r = -2t + 5, \text{ For } r = 0, t = \frac{5}{2}\text{ hours or } 2.5 \text{ hours } OR$ (iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4}\text{ hours or } 1.25\text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = -\log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log\frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, 1.F. (Integrating Factor) = $e^{\int \sin y dy} = e^{\log \sin y} = \sin y$		SERVICE TO THE COLOR OF THE SERVICE AND THE COLOR OF THE SERVICE AND THE SERVI
(ii) Separating the variable and integrating, $\int dr = \frac{2k}{3} \int dt \Rightarrow r = \frac{2}{3} kt + C$ Putting $t = 0, r = 5$, we get $C = 5$ $r = \frac{2}{3} kt + 5$ (iii) (a) Putting $r = 3, t = 1, 3 = \frac{2}{3} k(1) + 5 \Rightarrow k = -3$ $r = -2t + 5, \text{ For } r = 0, t = \frac{5}{2} \text{ hours or } 2.5 \text{ hours}$ OR (iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3} k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{x}}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = \log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, The solution of the differential equation is, $\left(2y^2 + x^2\right)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, LF . (Integrating Factor) $= e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$y \cdot e^{2x} = \frac{e^{-x}}{5} (2\cos x + \sin x) + C \implies y = \frac{1}{5} (2\cos x + \sin x) + Ce^{-2x}$
Putting $t = 0, r = 5$, we get $C = 5$ $r = \frac{2}{3}kt + 5$ (iii) (a) Putting $r = 3, t = 1, 3 = \frac{2}{3}k(1) + 5 \Rightarrow k = -3$ $r = -2t + 5, \text{ For } r = 0, t = \frac{5}{2} \text{ hours or } 2.5 \text{ hours } OR$ (iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, i.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log dny} = \sin y$	23	(i) Order = 1, Degree = 1
(iii) (a) Putting $\mathbf{r} = 3$, $\mathbf{t} = 1$, $3 = \frac{2}{3}\mathbf{k}(1) + 5 \Rightarrow \mathbf{k} = -3$ $\mathbf{r} = -2\mathbf{t} + 5$, For $\mathbf{r} = 0$, $t = \frac{5}{2}$ hours or 2.5 hours OR (iii) (b) Putting $\mathbf{r} = 1$, $t = 1$, $1 = \frac{2}{3}\mathbf{k} + 5 \Rightarrow \mathbf{k} = -6$ $\therefore \mathbf{r} = -4\mathbf{t} + 5$, For $\mathbf{r} = 0$, $t = \frac{5}{4}$ hours or 1.25 hours $\frac{d\mathbf{y}}{d\mathbf{x}} = -\frac{\mathbf{x}^2 + \mathbf{y}^2}{\mathbf{x}\mathbf{y}} = -\frac{1 + \left(\frac{\mathbf{y}}{\mathbf{x}}\right)^2}{\frac{\mathbf{y}}{\mathbf{x}}}$, Put $\mathbf{y} = \mathbf{v}\mathbf{x}$, $\frac{d\mathbf{y}}{d\mathbf{x}} = \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}}$ $\Rightarrow \mathbf{v} + \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}} = -\frac{1 + \mathbf{v}^2}{\mathbf{v}} \Rightarrow \mathbf{x} \frac{d\mathbf{v}}{d\mathbf{x}} = -\frac{1 + 2\mathbf{v}^2}{\mathbf{v}}$ $\Rightarrow \frac{1}{4} \int \frac{4\mathbf{v}}{1 + 2\mathbf{v}^2} d\mathbf{v} = -\int \frac{1}{\mathbf{x}} d\mathbf{x}$ $\Rightarrow \frac{1}{4} \log(1 + 2\mathbf{v}^2) = -\log \mathbf{x} + \log C$ $\Rightarrow \log(1 + 2\mathbf{v}^2) = \log\frac{C^4}{\mathbf{x}^4} \Rightarrow 1 + 2\left(\frac{\mathbf{y}}{\mathbf{x}}\right)^2 = \frac{D}{\mathbf{x}^4}$, $D = C^4$ For $\mathbf{x} = 1$, $\mathbf{y} = 1$, $D = 3$, $\therefore \text{The solution of the differential equation is, } (2\mathbf{y}^2 + \mathbf{x}^2)\mathbf{x}^2 = 3$ 25 The differential equation can be written as: $\frac{d\mathbf{x}}{d\mathbf{y}} + \cot\mathbf{y} \cdot \mathbf{x} = \cos\mathbf{y}$, which is a linear order differential equation $\text{Here, } \mathbf{P} = \cot\mathbf{y}, \ Q = \cos\mathbf{y}, \text{ I.F. (Integrating Factor)} = e^{\int \cot\mathbf{y} \ d\mathbf{y}} = e^{\log \sin\mathbf{y}} = \sin\mathbf{y}$		3
(iii) (a) Putting $r = 3, t = 1, 3 = \frac{2}{3}k(1) + 5 \Rightarrow k = -3$ $r = -2t + 5, \text{ For } r = 0, t = \frac{5}{2} \text{ hours or } 2.5 \text{ hours}$ OR (iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = -\log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, $I.F.$ (Integrating Factor) $= e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		
$r = -2t + 5, \text{ For } r = 0, \ t = \frac{5}{2} \text{ hours or } 2.5 \text{ hours}$ OR $(iii) (b) \text{ Putting } r = 1, t = 1, \ 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore \ r = -4t + 5, \text{ For } r = 0, \ t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{y}}, \text{ Put } y = vx, \ \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = -\log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, $I.F.$ (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$r = \frac{2}{3}kt + 5$
(iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ 25 The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y, Q = \cos y, I.F. \text{ (Integrating Factor)} = e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		(iii) (a) Putting $r = 3, t = 1, 3 = \frac{2}{3}k(1) + 5 \Rightarrow k = -3$
(iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ 25 The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y, Q = \cos y, I.F. \text{ (Integrating Factor)} = e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$r = -2t + 5$. For $r = 0$, $t = \frac{5}{2}$ hours or 2.5 hours
(iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$ $\therefore r = -4t + 5, \text{ For } r = 0, t = \frac{5}{4} \text{ hours or } 1.25 \text{ hours}$ $\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{x}}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = -\log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		2
		OR
$\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1 + 2v^2) = -\log x + \log C$ $\Rightarrow \log(1 + 2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ 25 The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		(iii) (b) Putting $r = 1, t = 1, 1 = \frac{2}{3}k + 5 \Rightarrow k = -6$
$\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$ $\Rightarrow \frac{1}{4} \int \frac{4v}{1 + 2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log\left(1 + 2v^2\right) = -\log x + \log C$ $\Rightarrow \log\left(1 + 2v^2\right) = \log\frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } \left(2y^2 + x^2\right)x^2 = 3$ 25 The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		\therefore r=-4t+5, For r=0, t= $\frac{5}{4}$ hours or 1.25 hours
$\Rightarrow \frac{1}{4} \int \frac{4v}{1+2v^2} dv = -\int \frac{1}{x} dx$ $\Rightarrow \frac{1}{4} \log(1+2v^2) = -\log x + \log C$ $\Rightarrow \log(1+2v^2) = \log \frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } (2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$	24	$\frac{dy}{dx} = -\frac{x^2 + y^2}{xy} = -\frac{1 + \left(\frac{y}{x}\right)^2}{y}, \text{ Put } y = vx, \frac{dy}{dx} = v + x\frac{dv}{dx}$
$\Rightarrow \frac{1}{4}\log(1+2v^2) = -\log x + \log C$ $\Rightarrow \log(1+2v^2) = \log\frac{C^4}{x^4} \Rightarrow 1 + 2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x = 1, y = 1, D = 3$, $\therefore \text{ The solution of the differential equation is, } \left(2y^2 + x^2\right)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$\Rightarrow v + x \frac{dv}{dx} = -\frac{1 + v^2}{v} \Rightarrow x \frac{dv}{dx} = -\frac{1 + 2v^2}{v}$
$\Rightarrow \log\left(1+2v^2\right) = \log\frac{C^4}{x^4} \Rightarrow 1+2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$ For $x=1,y=1,D=3$, The solution of the differential equation is, $\left(2y^2+x^2\right)x^2=3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$\Rightarrow \frac{1}{4} \int \frac{4v}{1+2v^2} dv = -\int \frac{1}{x} dx$
For $x = 1, y = 1, D = 3$, The solution of the differential equation is, $(2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y$, which is a linear order differential equation Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$\Rightarrow \frac{1}{4}\log(1+2v^2) = -\log x + \log C$
.: The solution of the differential equation is, $(2y^2 + x^2)x^2 = 3$ The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y$, which is a linear order differential equation Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		$\Rightarrow \log\left(1+2v^2\right) = \log\frac{C^4}{x^4} \Rightarrow 1+2\left(\frac{y}{x}\right)^2 = \frac{D}{x^4}, D = C^4$
The differential equation can be written as: $\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		For $x = 1, y = 1, D = 3,$
$\frac{dx}{dy} + \cot y \cdot x = \cos y, \text{ which is a linear order differential equation}$ Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$		The solution of the differential equation is, $(2y^2 + x^2)x^2 = 3$
Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$	25	The differential equation can be written as:
(iii		$\frac{dx}{dy}$ + cot y · x = cos y , which is a linear order differential equation
The solution is, $x(\sin y) = \int \cos y \cdot \sin y dy$		Here, $P = \cot y$, $Q = \cos y$, I.F. (Integrating Factor) = $e^{\int \cot y dy} = e^{\log \sin y} = \sin y$
		The solution is, $x(\sin y) = \int \cos y \cdot \sin y dy$

$\Rightarrow x(\sin y) = \frac{(\sin y)^2}{2} + C, \text{ For } x = 0, y = 0, C = 0.$ $\therefore \text{ The Particular solution is: } x \sin y = \frac{\sin^2 y}{2} \text{ or } \sin y = 2x \text{ or } y = \sin^{-1} 2x$
$(B)\frac{1}{x}$
(A) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A).
(a) $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$
$\frac{dy}{dx}=(1+x^2)(1+y^2)$
$\int \frac{dy}{1+y^2} = \int (1+x^2) dx$
$\Rightarrow tan^{-1}y = x + \frac{x^3}{3} + C$
y=1 when x= 0 => $C = \frac{\pi}{4}$ Particular solution is $\int_{C} t an^{-1}y = x + \frac{x^3}{3} + \frac{\pi}{4}$ (b) The given differential equation can be writ $\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$ putting y= vx, we get
$v + x \frac{dv}{dx} = \frac{x^2 + 3v^2x^2}{2xvx}$ $\int \frac{2v}{1+v^2} dv = \int \frac{dx}{x}$
=> $log(1 + v^2) = log x + logC$ => $1 + v^2 = Cx$
$\Rightarrow 1 + \frac{y^2}{x^2} = Cx \text{ or } x^2 + y^2 = Cx^3$

	CHAPTER 10 VECTOR	
Q		Code and Marks
1	If vector $\vec{a} = 3\hat{i} + 2\hat{j} - \hat{k}$ and vector $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, then which of the following is correct?	65/1/1
	(A) $\overrightarrow{a} \mid \mid \overrightarrow{b}$ (B) $\overrightarrow{a} \perp \overrightarrow{b}$	
	(C) $ \overrightarrow{b} > \overrightarrow{a} $ (D) $ \overrightarrow{a} = \overrightarrow{b} $	CF /1 /1
2	If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $ \overrightarrow{a} = \sqrt{37}$, $ \overrightarrow{b} = 3$ and $ \overrightarrow{c} = 4$, then angle between \overrightarrow{b} and \overrightarrow{c} is	65/1/1 65/1/2 65/1/3
	1 AND A AMERICAN STATE (1990)	
	(A) $\frac{\kappa}{6}$ (B) $\frac{\kappa}{4}$	
	(C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$	
3	The diagonals of a parallelogram are given by $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} - \hat{k}$. Find the area of the parallelogram.	65/1/1 65/2/2
4	 (a) Two friends while flying kites from different locations, find the strings of their kites crossing each other. The strings can be represented by vectors \$\overline{a} = 3\hat{i} + \hat{j} + 2\hat{k}\$ and \$\overline{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}\$. Determine the angle formed between the kite strings. Assume there is no slack in the strings. 	65/1/1 65/1/2 65/1/3
	OR	
	(b) Find a vector of magnitude 21 units in the direction opposite to that	
	of \overrightarrow{AB} where A and B are the points A(2, 1, 3) and B(8, -1, 0) respectively.	
5	If $\vec{\alpha} = \hat{i} - 4\hat{j} + 9\hat{k}$ and $\vec{\beta} = 2\hat{i} - 8\hat{j} + \lambda\hat{k}$ are two mutually parallel vectors, then λ is equal to: (A) -18 (B) 18	65/1/2
	(C) $\frac{-34}{9}$ (D) $\frac{34}{9}$	
6	The unit vector perpendicular to the vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{j}$ is	65/1/3
	(A) \hat{k} (B) $-\hat{k} + \hat{j}$	
	(C) $\frac{\hat{i} - \hat{j}}{\sqrt{2}}$ (D) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$	
7	The diagonals of a parallelogram are given by $\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}$ and	65/1/3
	$\vec{b} = \hat{i} + 3\hat{j} - \hat{k}$. Find the area of the parallelogram.	

8	The projection vector of vector \vec{a} on vector \vec{b} is	65/2/1
	(A) $\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{b} ^2}\right) \overrightarrow{b}$ (B) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{b} }$	
	(C) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{a} }$ (D) $\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{a} ^2}\right) \overrightarrow{b}$	
9	Let \vec{p} and \vec{q} be two unit vectors and α be the angle between them. Then	65/2/1
	$(\vec{p} + \vec{q})$ will be a unit vector for what value of α ?	
	(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$	
	(C) $\frac{\pi}{2}$ (D) $\frac{2\pi}{3}$	
10	(a) A vector a makes equal angles with all the three axes. If the magnitude of the vector is 5√3 units, then find a. OR	65/2/1 65/2/2 65/2/3
	(b) If $\vec{\alpha}$ and $\vec{\beta}$ are position vectors of two points P and Q respectively, then find the position vector of a point R in QP produced such that $QR = \frac{3}{2}QP.$	
11	If \vec{a} and \vec{b} are two non-collinear vectors, then find x , such that $\vec{a} = (x - 2)$ $\vec{a} + \vec{b}$ and $\vec{\beta} = (3 + 2x) \vec{a} - 2\vec{b}$ are collinear.	65/2/1
12	The values of x for which the angle between the vectors $\vec{\mathbf{a}} = 2x^2\hat{\mathbf{i}} + 4x\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = 7\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + x\hat{\mathbf{k}}$ is obtuse, is: (A) $0 \text{ or } \frac{1}{2}$ (B) $x > \frac{1}{2}$ (C) $\left(0, \frac{1}{2}\right)$ (D) $\left[0, \frac{1}{2}\right]$	65/2/2
13	$\overrightarrow{B} \overrightarrow{D} \times \overrightarrow{D} \overrightarrow{D} = 4^{\circ} + 9^{\circ} + 9^{\circ} + 1 + \dots + \dots$	65/2/2
	If $\overrightarrow{PQ} \times \overrightarrow{PR} = 4\hat{i} + 8\hat{j} - 8\hat{k}$, then the area ($\triangle PQR$) is (A) 2 sq units (B) 4 sq units	
	(C) 6 sq units (D) 4 sq units (D) 12 sq units	

Let $\vec{p} = 2\hat{i} - 3\hat{j} - \hat{k}$, $\vec{q} = -3\hat{i} + 4\hat{j} + \hat{k}$ and $\vec{r} = \hat{i} + \hat{j} + 2\hat{k}$. Express \vec{r} in the form	65/2/2
of $\overrightarrow{r} = \lambda \overrightarrow{p} + \mu \overrightarrow{q}$ and hence find the values of λ and μ .	
If \vec{p} and \vec{q} are unit vectors, then which of the following values of $\vec{p}\cdot\vec{q}$ is not possible ?	65/2/3
(A) $\frac{-1}{2}$ (B) $\frac{1}{\sqrt{2}}$	
(C) $\frac{\sqrt{3}}{2}$ (D) $\sqrt{3}$	
If projection of $\vec{a} = a\hat{i} + \hat{i} + t\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{i} + 2\hat{k}$ is 4 units then a is	65/2/3
(6) 10	
If $ \vec{a} = 2$, $ \vec{b} = 3$ and $\vec{a} \cdot \vec{b} = 4$, then evaluate $ \vec{a} + 2\vec{b} $.	65/2/3
If the sides AB and AC of Δ ABC are represented by vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ respectively, then the length of the median through A on	65/4/1 65/4/2 65/4/3
BC is:	
(A) $2\sqrt{2}$ units (B) $\sqrt{18}$ units	
(C) $\frac{\sqrt{34}}{2}$ units (D) $\frac{\sqrt{48}}{2}$ units	
(a) Show that the area of a parallelogram whose diagonals are represented by \overrightarrow{a} and \overrightarrow{b} is given by $\frac{1}{2} \overrightarrow{a} \times \overrightarrow{b} $. Also find the area of a parallelogram whose diagonals are $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{i} - \hat{k}$	65/4/1 65/4/2 65/4/3
Let \overrightarrow{a} be a position vector whose tip is the point $(2, -3)$. If $\overrightarrow{AB} = \overrightarrow{a}$, where coordinates of A are $(-4, 5)$, then the coordinates of B are: (A) $(-2, -2)$ (B) $(2, -2)$ (C) $(-2, 2)$ (D) $(2, 2)$	65/5/1 65/5/2 65/5/3
	of $\overrightarrow{r}=\lambda\overrightarrow{p}+\mu\overrightarrow{q}$ and hence find the values of λ and μ . If \overrightarrow{p} and \overrightarrow{q} are unit vectors, then which of the following values of $\overrightarrow{p}\cdot\overrightarrow{q}$ is not possible? (A) $\frac{-1}{2}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\sqrt{3}$ If projection of $\overrightarrow{a}=\alpha \hat{1}+\hat{j}+4\hat{k}$ on $\overrightarrow{b}=2\hat{1}+6\hat{j}+3\hat{k}$ is 4 units, then α is (A) -13 (B) -5 (C) 13 (D) 5 If $ \overrightarrow{a} =2$, $ \overrightarrow{b} =3$ and $\overrightarrow{a}\cdot\overrightarrow{b}=4$, then evaluate $ \overrightarrow{a}+2\overrightarrow{b} $. If the sides AB and AC of Δ ABC are represented by vectors $\hat{j}+\hat{k}$ and $3\hat{i}-\hat{j}+4\hat{k}$ respectively, then the length of the median through A on BC is: (A) $2\sqrt{2}$ units (B) $\sqrt{18}$ units (C) $\frac{\sqrt{34}}{2}$ units (D) $\frac{\sqrt{48}}{2}$ units (a) Show that the area of a parallelogram whose diagonals are represented by \overrightarrow{a} and \overrightarrow{b} is given by $\frac{1}{2}$ $ \overrightarrow{a}\times\overrightarrow{b} $. Also find the area of a parallelogram whose diagonals are $\hat{i}+3\hat{j}-\hat{k}$. Let \overrightarrow{a} be a position vector whose tip is the point (2, -3). If $\overrightarrow{AB}=\overrightarrow{a}$, where coordinates of A are (-4 , 5), then the coordinates of B are:

0.1		CE /E /1
21	The respective values of $ \overrightarrow{a} $ and $ \overrightarrow{b} $, if given	65/5/1 65/5/2
	$(\overrightarrow{a} - \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b}) = 512$ and $ \overrightarrow{a} = 3 \overrightarrow{b} $, are:	65/5/3
	(A) 48 and 16 (B) 3 and 1	
	(C) 24 and 8 (D) 6 and 2	
22	(a) Find a vector of magnitude 5 which is perpendicular to both the	65/5/1 65/5/2
	vectors $3\hat{i} - 2\hat{j} + \hat{k}$ and $4\hat{i} + 3\hat{j} - 2\hat{k}$.	65/5/3
	record of 2j r K and 11 r oj 2 K.	
	OR	
	(b) Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq 0$. Show that $\overrightarrow{b} = \overrightarrow{c}$.	
23	A man needs to hang two lanterns on a straight wire whose end points	65/5/1 65/5/2
	have coordinates A $(4, 1, -2)$ and B $(6, 2, -3)$. Find the coordinates of the	65/5/3
	Str. Co. Str. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	
	points where he hangs the lanterns such that these points trisect the	
24	wire AB.	65/5/1
	(a) If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ such that $ \overrightarrow{a} = 3$, $ \overrightarrow{b} = 5$, $ \overrightarrow{c} = 7$, then	65/5/2 65/5/3
	find the angle between \overrightarrow{a} and \overrightarrow{b} .	
	OR	
	(b) If \overrightarrow{a} and \overrightarrow{b} are unit vectors inclined with each other at an angle	
	θ , then prove that $\frac{1}{2} \overrightarrow{a} - \overrightarrow{b} = \sin \frac{\theta}{2}$.	
25	16. Let $ \overrightarrow{a} = 5$ and $-2 \le \lambda \le 1$. Then, the range of $ \lambda \overrightarrow{a} $ is:	65/6/1
	(A) [5, 10] (B) [-2, 5]	65/6/2 65/6/3
	(C) [-2, 1] (D) [-10, 5]	
26	Assertion (A): If $ \overrightarrow{a} \times \overrightarrow{b} ^2 + \overrightarrow{a} \cdot \overrightarrow{b} ^2 = 256$ and $ \overrightarrow{b} = 8$, then	65/6/1 65/6/2
		65/6/3
	$ \overrightarrow{a} = 2.$	
	Reason (R): $\sin^2 \theta + \cos^2 \theta = 1$ and	
	$ \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \overrightarrow{b} \sin \theta \text{ and } \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \overrightarrow{b} \cos \theta.$	

27	24. (a) If \overrightarrow{a} and \overrightarrow{b} are position vectors of point A and point B	65/6/1 65/6/2 65/6/3
	respectively, find the position vector of point C on BA produced such that BC = 3BA.	
	OR	
	(b) Vector \overrightarrow{r} is inclined at equal angles to the three axes x, y and z. If magnitude of \overrightarrow{r} is $5\sqrt{3}$ units, then find \overrightarrow{r} .	
28	A student tries to tie ropes, parallel to each other from one end of the wall to the other. If one rope is along the vector $3\hat{i} + 15\hat{j} + 6\hat{k}$ and the other is along the vector $2\hat{i} + 10\hat{j} + \lambda\hat{k}$, then the value of λ is :	65/7/1 65/7/2 65/7/3
	(A) 6 (B) 1	
	(C) $\frac{1}{4}$ (D) 4	
29	If $ \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{a} - \overrightarrow{b} $ for any two vectors, then vectors \overrightarrow{a} and \overrightarrow{b} are:	65/7/1 65/7/2 65/7/3
	(A) orthogonal vectors (B) parallel to each other	
	(C) unit vectors (D) collinear vectors	
30	(a) The scalar product of the vector $\overrightarrow{a} = \hat{i} - \hat{j} + 2\hat{k}$ with a unit vector along sum of vectors $\overrightarrow{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = \lambda \hat{i} - 2\hat{j} - 3\hat{k}$ is equal to 1. Find the value of λ .	65/7/1 65/7/2 65/7/3
31		65(B)
	The number of vector(s) of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \text{ and } \vec{b} = \hat{j} + \hat{k} \text{ is (are)}:$	
	(A) one (B) two	
	(C) three (D) infinite	
32	Assertion (A): The vectors $\vec{a} = 4\hat{1} + \hat{j} - \hat{k}$ and $\vec{b} = -2\hat{1} + 3\hat{j} - 5\hat{k}$ are mutually perpendicular vectors.	65(B)
	Reason (R) : Two vectors \vec{a} and \vec{b} are perpendicular to each other, if $\vec{a} \cdot \vec{b} = 0$.	

33	(a)	If $ \vec{a} + \vec{b} = 60$, $ \vec{a} - \vec{b} = 40$ and $ \vec{b} = 46$, then find $ \vec{a} $.	65(B)
		OR	
	(b)	Using vectors, find the value of K such that the points $(K, -11, 2)$, $(0, -2, 2)$ and $(2, 4, 2)$ are collinear.	
34		$= \hat{1} + 2\hat{j} + \hat{k}, \vec{b} = 2\hat{1} + \hat{j} \text{ and } \vec{c} = 3\hat{1} - 4\hat{j} - 5\hat{k}, \text{ then find a unit}$ or perpendicular to both the vectors $(\vec{a} - \vec{b})$ and $(\vec{c} - \vec{b})$.	65(B)

	ANSWERS
1	(B) $\overrightarrow{a} \perp \overrightarrow{b}$
2	(C) $\frac{\pi}{3}$
3	$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -2\hat{i} + 3\hat{j} + 7\hat{k}$
	Area of parallelogram = $\frac{1}{2} \left \vec{a} \times \vec{b} \right $
	$=\frac{1}{2}\sqrt{\left(-2\right)^2+3^2+7^2}=\frac{\sqrt{62}}{2}$
4	Let the required angle between the kite strings be θ .
	Then, $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }$
	$\Rightarrow \cos \theta = \frac{\left(3\hat{i} + \hat{j} + 2\hat{k}\right)\left(2\hat{i} - 2\hat{j} + 4\hat{k}\right)}{\sqrt{9 + 1 + 4}\sqrt{4 + 4 + 16}} = \frac{12}{\sqrt{336}} = \frac{3}{\sqrt{21}}$
	$\Rightarrow \theta = \cos^{-1}\left(\frac{12}{\sqrt{336}}\right) \text{ or } \cos^{-1}\left(\frac{3}{\sqrt{21}}\right)$
	OR
	$\overrightarrow{BA} = -6\hat{i} + 2\hat{j} + 3\hat{k}$

 $Required\,unit\,vector\,of\,magnitude\,21$

	$= 21 \times \left(\frac{-6\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{36 + 4 + 9}} \right)$
	$=3(-6\hat{i}+2\hat{j}+3\hat{k}) \text{ or } -18\hat{i}+6\hat{j}+9\hat{k}$
5	(B) 18
6	(A) k
7	\hat{i} \hat{j} \hat{k}
	$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -2\hat{i} + 3\hat{j} + 7\hat{k}$
	1 3 -1
	Area of parallelogram = $\frac{1}{2} \vec{a} \times \vec{b} $
	$=\frac{1}{2}\sqrt{\left(-2\right)^2+3^2+7^2}=\frac{\sqrt{62}}{2}$
8	$(A) \left(\frac{\vec{a}.\vec{b}}{ \vec{b} ^2} \right) \vec{b}$
9	$(D)\frac{2\pi}{3}$
10	Let α be the angle which the vector \vec{a} makes with all the three axes.
	Then $3\cos^2\alpha = 1$
	$\Rightarrow \cos\alpha = \frac{1}{\sqrt{3}}$
	The unit vector along the vector $\vec{a} = \frac{1}{\sqrt{3}}(\hat{\imath} + \hat{\jmath} + \hat{k})$
	$\vec{a} = 5(\hat{\imath} + \hat{\jmath} + \hat{k})$
	OR
	$R(\overrightarrow{x}) P(\overrightarrow{\alpha}) Q(\overrightarrow{\beta})$
	$\frac{QR}{QP} = \frac{3}{2}$
	Hence, R divides PQ, externally, in the ratio 1:3.
	The Position vector of $R = \vec{x} = \frac{\vec{\beta} - 3\vec{\alpha}}{1 - 3} = \frac{3\vec{\alpha} - \vec{\beta}}{2}$

11	$\vec{\alpha}$ and $\vec{\beta}$ are collinear
	$\Rightarrow \frac{x-2}{3+2x} = \frac{1}{-2} \qquad \Rightarrow x = \frac{1}{4}$
12	$(C)\left(0,\frac{1}{2}\right)$
13	(C) 6 sq units
14	$\vec{r} = \lambda \vec{p} + \mu \vec{q}$
	$\Rightarrow 1 = 2\lambda - 3\mu, 1 = -3\lambda + 4\mu, 2 = -\lambda + \mu$
	$\Rightarrow \lambda = -7, \mu = -5$
15	(D) √3
16	(D) 5
17	$(\vec{a} + 2\vec{b})^2 = \vec{a} ^2 + 2\vec{b} ^2 + 4\vec{a}.\vec{b}$
	= 56
10	$\Rightarrow \vec{a} + 2\vec{b} = \sqrt{56} $
18	(C) $\frac{\sqrt{34}}{2}$ units
19	Let \overrightarrow{ABCD} be the parallelogram with diagonals $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BD} = \overrightarrow{b}$.
	$ \therefore \overrightarrow{AB} = \frac{1}{2} (\vec{a} - \vec{b}) \text{ and } \overrightarrow{AD} = \frac{1}{2} (\vec{a} + \vec{b}) $ Area of \overrightarrow{ABCD} $ = \overrightarrow{AB} \times \overrightarrow{AD} $ $ = \frac{1}{2} (\vec{a} - \vec{b}) \times \frac{1}{2} (\vec{a} + \vec{b}) $
	$= \frac{1}{4} \left \vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \right $ $1 \left \vec{a} \times \vec{b} + \vec{c} \times \vec{b} \right \qquad (\dots \vec{a} \times \vec{b} - \vec{b})$
	$ = \frac{1}{4} \vec{a} \times \vec{b} + \vec{a} \times \vec{b} \qquad (\because \vec{a} \times \vec{a} = \vec{0}) $ $ = \frac{1}{4} 2(\vec{a} \times \vec{b}) $ $ = \frac{1}{4} \vec{a} \times \vec{a} = \vec{0}) $
	$= \frac{1}{2} \vec{a} \times \vec{b} $ Given $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} - \hat{k}$

Area of	11 - 1	ra cons	. 1	1 7
Areaoi	parane	ogra	$m = \frac{1}{2}$	$ a \times b $
	Î	\hat{j}	k	
Now a>	$\langle \vec{b} = 2 \rangle$	-1	1 :	$= -2\hat{i} + 3\hat{j} + 7\hat{k}$
	1	3	-1	

Area of parallelogram = $\frac{1}{2}\sqrt{62}$

- 20 **(C) (-2, 2)**
- 21 (C) 24 and 8

22 Let
$$\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}$$
, $\vec{b} = 4\hat{i} + 3\hat{j} - 2\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & 1 \\ 4 & 3 & -2 \end{vmatrix} = \hat{i} + 10\hat{j} + 17\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{1^2 + 10^2 + 17^2} = \sqrt{390}$$

Unit vector $\hat{\mathbf{n}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|} = \frac{1}{\sqrt{390}} (\hat{\mathbf{i}} + \mathbf{10}\hat{\mathbf{j}} + \mathbf{17}\hat{\mathbf{k}})$

$$\therefore Required\ vector = \frac{5}{\sqrt{390}}(\hat{\textbf{\i}} + \textbf{10}\hat{\textbf{\j}} + \textbf{17}\hat{\textbf{k}})$$

OR

(b)
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} \Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0$$

$$\Rightarrow$$
 either $\vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$, since $\vec{a} \neq 0$

Also,
$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \Rightarrow \vec{a} \times (\vec{b} - \vec{c}) = 0$$

$$\Rightarrow$$
 either $\vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$, since $\vec{a} \neq 0$

Since vectors \overrightarrow{a} and $(\overrightarrow{b}-\overrightarrow{c})$ cannot be \parallel and \perp simultaneously

Hence
$$\vec{b} = \vec{c}$$

23

Let P and Q trisect the wire AB.

P divides AB in the ratio 1:2 then, coordinate of point $P = \left(\frac{14}{3}, \frac{4}{3}, -\frac{7}{3}\right)$

	Q divides AB in the ratio 2:1 then, coordinate of point Q = $\left(\frac{16}{3}, \frac{5}{3}, -\frac{8}{3}\right)$
4	Given $\vec{a} + \vec{b} + \vec{c} = \vec{0} \implies \vec{a} + \vec{b} = -\vec{c} $
	$\Rightarrow \left \vec{\mathbf{a}} + \vec{\mathbf{b}} \right ^2 = \vec{\mathbf{c}} ^2 \Rightarrow \vec{\mathbf{a}} ^2 + \left \vec{\mathbf{b}} \right ^2 + 2 \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{c}} ^2$
	$\Rightarrow 9 + 25 + 2 \vec{a} \cdot \vec{b} = 49$
	$\Rightarrow 2 \vec{a} \vec{b} \cos\theta = 15$
	$\Rightarrow \cos \theta = \frac{1}{2} :: \theta = \frac{\pi}{3}$
	OR
	(b) $ \vec{a} = \vec{b} = 1$
	$\left \overrightarrow{a} - \overrightarrow{b} \right ^2 = \left \overrightarrow{a} \right ^2 + \left \overrightarrow{b} \right ^2 - 2\overrightarrow{a} \cdot \overrightarrow{b}$
	$=1+1-2 \vec{a} \vec{b} \cos\theta$
	$=2-2\cos\theta$
	$=2\left(2\sin^2\frac{\theta}{2}\right)=4\sin^2\frac{\theta}{2}$
	$\Rightarrow sin\frac{\theta}{2} = \frac{1}{2} \vec{a} - \vec{b} $
5	1 mark for any attempt as correct answer is not given in any option

- 25
- 26 (A) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A).
- (a) C divides BA in the ratio 3: 2 externally Required vector = $\vec{c} = \frac{3\vec{a} - 2\vec{b}}{3 - 2} = 3\vec{a} - 2\vec{b}$ OR
 - (b) Unit vector equally inclined along coordinate axes is $\frac{\hat{i}}{\sqrt{3}} + \frac{\hat{j}}{\sqrt{3}} + \frac{\hat{k}}{\sqrt{3}}$ $\vec{r} = 5\sqrt{3}(\frac{\hat{i}}{\sqrt{3}} + \frac{\hat{j}}{\sqrt{3}} + \frac{\hat{k}}{\sqrt{3}}) = 5\hat{i} + 5\hat{j} + 5\hat{k}$ (or $-5\hat{i} - 5\hat{j} - 5\hat{k}$)
- 28 (D) 4
- (A) orthogonal vectors

30	(a) Let $\vec{d} = \vec{b} + \vec{c} = (2 + \lambda)\hat{i} - 6\hat{j}$	+ 2k
	$\hat{\mathbf{d}} = \frac{(2+\lambda)\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 2}{\sqrt{(2+\lambda)^2 + 40}}$ $\vec{\mathbf{a}} \cdot \hat{\mathbf{d}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot \frac{(2+\lambda)^2 + 40}{\sqrt{(2+\lambda)^2 + 40}}$	$\frac{(\hat{k})^2}{(2+\lambda)^2+40} = 1$
31	$\Rightarrow (2+\lambda)+6+4=\sqrt{(2+1)^2}$ (B)two	$(\lambda)^2 + 40 \Rightarrow \lambda = -5$
32	(A) Both Assertion (A) and Reason the Assertion (A).	(R) are true, and Reason (R) is the correct explanation of
33		$ \vec{a} = 22$
	(a) $\left \vec{a} + \vec{b} \right ^2 + \left \vec{a} - \vec{b} \right ^2 = 2 \left(\left \vec{a} \right ^2 + \left \vec{b} \right ^2 \right)$	OR (b)Let A, B, C be the points (k, -11, 2), (0, -2, 2) and (2, 4, 2) respectively
	$(60)^2 + (40)^2 = 2(\vec{a} ^2 + (46)^2)$	$\overrightarrow{AB} = -kt + 9f$
	(3600 + 1600)	$\overrightarrow{BC} = 2i + 6j$
	$\frac{(3600+1600)}{2} = (\vec{a} ^2 + (46)^2)$	Since \overrightarrow{AB} is parallel to \overrightarrow{BC}
	$2600 - 2116 = \vec{a} ^2$	$\frac{-k}{2} = \frac{9}{6}$
	$484 - \vec{a} ^2$	=>k=-3
34	let $\vec{p} = \vec{a} - \vec{b} = -t + f + k$ $\vec{q} = \vec{c} - \vec{b} = t - 5f - 5k$ Vector perpendicular to \vec{p} and	$d \vec{q} = \vec{p} \times \vec{q} = \begin{vmatrix} \hat{t} & \hat{f} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -5 & -5 \end{vmatrix} = -4\hat{f} + 4\hat{k}$ $d \vec{p} \text{ and } \vec{q} = \frac{-4\hat{f} + 4\hat{k}}{\sqrt{3} + 2}$

 $=\frac{-\hat{\pmb{\jmath}}+\hat{\pmb{k}}}{\sqrt{2}}\quad \text{ or }\quad \frac{-1}{\sqrt{2}}\hat{\pmb{\jmath}}+\frac{1}{\sqrt{2}}\hat{\pmb{k}}$

	CHAPTER 11 3D	
Q.		Code and Marks
1	(a) Verify that lines given by $\vec{r} = (1 - \lambda)\hat{i} + (\lambda - 2)\hat{j} + (3 - 2\lambda)\hat{k}$ and	65/1/1 65/1/2
	$\overrightarrow{r} = (\mu + 1) \hat{i} + (2\mu - 1) \hat{j} - (2\mu + 1) \hat{k}$ are skew lines. Hence, find	65/1/3
	shortest distance between the lines.	
	OR	
	(b) During a cricket match, the position of the bowler, the wicket keeper	
	and the leg slip fielder are in a line given by $\overrightarrow{B} = 2\hat{i} + 8\hat{j}$,	
	$\overrightarrow{W} = 6\overrightarrow{i} + 12\overrightarrow{j}$ and $\overrightarrow{F} = 12\overrightarrow{i} + 18\overrightarrow{j}$ respectively. Calculate the ratio	
	in which the wicketkeeper divides the line segment joining the bowler and the leg slip fielder.	
2	(a) Find the image A' of the point A(1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.	65/1/1 65/1/2
	Also, find the equation of the line joining A and A'. OR	65/1/3
	(b) Find a point P on the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ such that its distance	
	from point $Q(2, 4, -1)$ is 7 units. Also, find the equation of line joining P and Q.	
3	If a line makes angles of $\frac{3\pi}{4}$, $\frac{\pi}{3}$ and θ with the positive directions of x, y	65/2/1 65/2/2 65/2/3
	and z-axis respectively, then θ is	
	(A) $\frac{-\pi}{3}$ only (B) $\frac{\pi}{3}$ only	
	(C) $\frac{\pi}{6}$ (D) $\pm \frac{\pi}{3}$	
4	The equation of a line parallel to the vector $3\hat{i} + \hat{j} + 2\hat{k}$ and passing through the point $(4, -3, 7)$ is:	65/2/1 65/2/2 65/2/3
	(A) $x = 4t + 3$, $y = -3t + 1$, $z = 7t + 2$	
	(B) $x = 3t + 4$, $y = t + 3$, $z = 2t + 7$	
	(C) $x = 3t + 4$, $y = t - 3$, $z = 2t + 7$	
	(D) $x = 3t + 4$, $y = -t + 3$, $z = 2t + 7$	

0.0000000000000000000000000000000000000	e line $x = 1 + 5\mu$, y = owing point?	= $-5 + \mu$, $z = -6 - 3\mu$ passes through which of the	65/2/1 65/2/2 65/2/3
(A)	(1, -5, 6)	(B) (1, 5, 6)	
(C)	(1, -5, -6)	(D) (-1, -5, 6)	
6 (a)	Find the shortest of $\frac{x+1}{2} = \frac{y-1}{1} = \frac{x-3}{2} = \frac{y+15}{-7}$ OR		65/2/1 65/2/2 65/2/3
(p)	$l: \overrightarrow{\mathbf{r}} = 4\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{j}}$	A' of the point A(2, 1, 2) in the line $2\hat{k} + \lambda \ (\hat{i} - \hat{j} - \hat{k})$. Also, find the equation of line he foot of perpendicular from point A on the line l .	
214111	oordinate of P is 4, t	line segment joining $(3, 6, -1)$ and $(6, 2, -2)$ and hen its z-coordinate is :	65/4/1
(A) (C)	$-\frac{3}{2}$	(B) 0 (D) 3/2	
124 15 14 25	B P M (14 4 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	point $(-1, -5, -10)$ from the point of intersection $= \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$.	65/4/1 65/4/2 65/4/3
9 (b)	passes through the lines $\frac{x-8}{3} = \frac{y+1}{-1}$	of a line in vector and cartesian form which the point $(1, 2, -4)$ and is perpendicular to the $\frac{19}{6} = \frac{z-10}{7}$, and $5\hat{k} + \mu(3\hat{i} + 8\hat{j} - 5\hat{k})$.	65/4/1 65/4/2 65/4/3
In	engineer is designing tially, two metro line	a new metro rail network in a city. s, Line A and Line B, each consisting of multiple The track for Line A is represented by	65/4/1 65/4/2 65/4/3
sta	itions are designed.	The track for Line A is represented by	

 $l_1: \ \frac{\mathbf{x}-2}{3} = \frac{\mathbf{y}+1}{-2} = \frac{\mathbf{z}-3}{4}, \ \text{while the track for Line B is represented by}$ $l_2: \ \frac{\mathbf{x}-1}{2} = \frac{\mathbf{y}-3}{1} = \frac{\mathbf{z}+2}{-3}.$

Based on the above information, answer the following questions:

- Find whether the two metro tracks are parallel.
- (ii) Solar panels are to be installed on the rooftop of the metro stations. Determine the equation of the line representing the placement of solar panels on the rooftop of Line A's stations, given that panels are to be positioned parallel to Line A's track (l₁) and pass through the point (1, −2, −3).
- (iii) (a) To connect the stations, a pedestrian pathway perpendicular to the two metro lines is to be constructed which passes through point (3, 2, 1). Determine the equation of the pedestrian walkway.

OR

(iii) (b) Find the shortest distance between Line A and Line B. 2

1

11	If the direction cosines of a line are $\lambda,\lambda,\lambda,$ then λ is equal to :	65/4/2
	(A) $-\frac{1}{\sqrt{3}}$ (B) 1	
	(C) $\frac{1}{\sqrt{3}}$ (D) $\pm \frac{1}{\sqrt{3}}$	
12	The coordinates of the foot of the perpendicular drawn from the point $A(-2,3,5)$ on the y-axis is :	65/4/3
	(A) (0, 0, 5) (B) (0, 3, 0)	
	(C) $(-2,0,5)$ (D) $(-2,0,0)$	
13	(a) Find the foot of the perpendicular drawn from the point (1, 1, 4) on the line $\frac{x+2}{5} = \frac{y+1}{2} = \frac{-z+4}{-3}$.	65/5/1 65/5/2 65/5/3
	OR (b) Find the point on the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-4}{3}$ at a distance of $2\sqrt{2}$ units from the point $(-1, -1, 2)$.	
14	25. Determine if the lines $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda (3\hat{i} - \hat{j})$ and $\vec{r} = (4\hat{i} - \hat{k}) + \mu (2\hat{i} + 3\hat{k})$ intersect with each other.	65/6/1
15	30. (a) Find the distance of the point P(2, 4, -1) from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}.$	65/6/1 65/6/2 65/6/3
	OR	
	(b) Let the position vectors of the points A, B and C be $3\hat{i} - \hat{j} - 2\hat{k}$, $\hat{i} + 2\hat{j} - \hat{k}$ and $\hat{i} + 5\hat{j} + 3\hat{k}$ respectively. Find the vector and	
	cartesian equations of the line passing through A and parallel to line BC.	
16	35. Let the polished side of the mirror be along the line $\frac{x}{1} = \frac{1-y}{-2} = \frac{2z-4}{6}$.	65/6/1
	A point P(1, 6, 3), some distance away from the mirror, has its image	

formed behind the mirror. Find the coordinates of the image point and	
the distance between the point P and its image.	
Find the value of λ if the following lines are perpendicular to each other:	65/6/2 65/6/3
$l_1: \frac{1-x}{-3} = \frac{3y-2}{2\lambda} = \frac{z-3}{3}$	
$l_2: \frac{x-1}{3\lambda} = \frac{1-y}{1} = \frac{2z-5}{3}$	
Find the foot of the perpendicular drawn from point $(2, -1, 5)$ to the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$. Also, find the length of the perpendicular.	65/6/2
Show that the line passing through the points A (0, -1, -1) and B (4, 5, 1) intersects the line joining points C (3, 9, 4) and D (-4, 4, 4).	65/6/3
(b) Find the shortest distance between the lines: $\overrightarrow{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda(\hat{i} - 2\hat{j} + 3\hat{k})$ $\overrightarrow{r} = (\hat{i} + 4\hat{k}) + \mu(3\hat{i} - 6\hat{j} + 9\hat{k}).$	65/7/1 65/7/2 65/7/3
(a) Find the point Q on the line $\frac{2x+4}{6} = \frac{y+1}{2} = \frac{-2z+6}{-4}$ at a distance of $3\sqrt{2}$ from the point P(1, 2, 3).	65/7/1 65/7/2 65/7/3
(b) Find the image of the point $(-1, 5, 2)$ in the line $\frac{2x-4}{2} = \frac{y}{2} = \frac{2-z}{3}$. Find the length of the line segment joining the points (given point and the image point).	
Find the angle between the two lines whose equations are $2x = 3y = -z$ and $6x = -y = -4z$.	65(B)
(a) Find the shortest distance between the lines given by $\vec{\mathbf{r}} = (4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) \text{ and}$ $\vec{\mathbf{r}} = (2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}) + \mu(3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}})$ OR	65(B)
age- [119] Copyright-©/2025/Jitu Sharma	

	Find the coordinates of the foot of the perpendicular and the length of the perpendicular drawn from the point P(5, 4, 2) to the line $\vec{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda(2\hat{i} + 3\hat{j} - \hat{k})$.
	ANSWERS
(a)	Rewriting the lines, we get $\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda \left(-\hat{i} + \hat{j} - 2\hat{k}\right) \text{ and } \vec{r} = (\hat{i} - \hat{j} - \hat{k}) + \mu (\hat{i} + 2\hat{j} - 2\hat{k})$ Let $\vec{a}_1 = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{a}_2 = \hat{i} - \hat{j} - \hat{k}$, $\vec{b}_1 = -\hat{i} + \hat{j} - 2\hat{k}$, $\vec{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k}$ Note that the dr's of given lines are not proportional so, they are not parallel lines. The lines will be skew if they do not intersect each other also. Here $\vec{a}_2 - \vec{a}_1 = \hat{j} - 4\hat{k}$, $\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = 2\hat{i} - 4\hat{j} - 3\hat{k}$ Consider $(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)$ $= (\hat{j} - 4\hat{k}) \cdot (2\hat{i} - 4\hat{j} - 3\hat{k}) = 8 \neq 0$ Hence lines will not intersect. So the lines are skew. Shortest Distance $= \frac{ (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) }{ \vec{b}_1 \times \vec{b}_2 }$ $= \frac{8}{\sqrt{4 + 16 + 9}} = \frac{8}{\sqrt{29}}$
b)	Let the wicket keeper divides the line segment in ratio $k:1$

a)

Hence, the required ratio is 2:3

dr's of AM are $<\lambda-1,2\lambda-5,3\lambda-1>$

Here $1(\lambda - 1) + 2(2\lambda - 5) + 3(3\lambda - 1) = 0$

The equation of given line is $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = \lambda$

Any arbitrary point on the line is $M(\lambda, 2\lambda + 1, 3\lambda + 2)$

• A(1, 6, 3)

 $A(\alpha,\beta,\gamma)$

M(1,3,5) is the footperpendicular of the point A to the given line.

Let image of point A in the line be $A'(\alpha, \beta, \gamma)$

Since M is the mid-point of AA', so $M\left(\frac{1+\alpha}{2}, \frac{6+\beta}{2}, \frac{3+\gamma}{2}\right) = M\left(1, 3, 5\right)$

 $\Rightarrow A'(1,0,7)$ is the image of A.

Also, Equation of AA' is $\frac{x-1}{0} = \frac{y-6}{-3} = \frac{z-3}{2}$

OR

(b) The given line is
$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9} = \lambda$$
 and $Q(2,4,-1)$

Any random point on the line will be given by $P(\lambda - 5, 4\lambda - 3, -9\lambda + 6)$

Since
$$PQ = 7 \Rightarrow \sqrt{(\lambda - 7)^2 + (4\lambda - 7)^2 + (-9\lambda + 7)^2} = 7$$

$$\Rightarrow 98(\lambda^2 - 2\lambda + 1) = 0 \Rightarrow \lambda = 1$$

Hence, the required point is P(-4,1,-3)

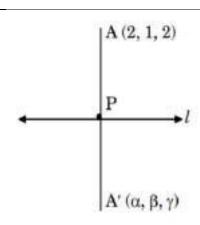
The equation of line PQ is $\frac{x+4}{6} = \frac{y-1}{3} = \frac{z+3}{2}$ or $\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2}$

- 3 No option is correct. Full marks may be awarded for attempting the question.
- 4 (C) x=3t+4, y=t-3, z=2t+7
- 5 (C) (1, -5, -6)

$$\vec{r} = -\hat{\imath} + \hat{\jmath} + 9\hat{k} + \lambda(2\hat{\imath} + \hat{\jmath} - 3\hat{k})$$

$$\vec{r} = 3\hat{i} - 15\hat{j} + 9\hat{k} + \mu(2\hat{i} - 7\hat{j} + 5\hat{k})$$

$$\overrightarrow{a_1} = -\hat{\imath} + \hat{\jmath} + 9\hat{k}, \ \overrightarrow{a_2} = 3\hat{\imath} - 15\hat{\jmath} + 9\hat{k}$$


$$\overrightarrow{b_1} = 2\hat{\imath} + \hat{\jmath} - 3\hat{k}$$
, $\overrightarrow{b_2} = 2\hat{\imath} - 7\hat{\jmath} + 5\hat{k}$

$$\overrightarrow{a_2} - \overrightarrow{a_1} = 4\hat{\imath} - 16\hat{\jmath}$$

$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -3 \\ 2 & -7 & 5 \end{vmatrix} = -16\hat{i} - 16\hat{j} - 16\hat{k}$$

S.D. =
$$\frac{|(\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2})|}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} = \frac{12}{\sqrt{3}} = 4\sqrt{3}$$

OR

Let the image of A in the line be $A'(\alpha, \beta, \gamma)$

The point P, which is the point of intersection of the lines l and AA', will have coordinates $(\lambda + 4, -\lambda + 2, -\lambda + 2)$ for some λ .

Drs of AP are $<\lambda+2,-\lambda+1,-\lambda>$

 $AP \perp I$

$$(\lambda + 2) - (-\lambda + 1) - (-\lambda) = 0$$

$$\Rightarrow \lambda = -\frac{1}{3}$$

Therefore, the coordinates of P are $(\frac{11}{3}, \frac{7}{3}, \frac{7}{3})$

P is the mid-point of AA'

$$\Rightarrow \frac{2+\alpha}{2} = \frac{11}{3}, \frac{1+\beta}{2} = \frac{7}{3}, \frac{2+\gamma}{2} = \frac{7}{3}$$

$$\Rightarrow \alpha = \frac{16}{3}, \beta = \frac{11}{3}, \gamma = \frac{8}{3}$$

The coordinates of the image are $(\frac{16}{3}, \frac{11}{3}, \frac{8}{3})$

The equation of AA' is

$$\frac{x-2}{\frac{10}{3}} = \frac{y-1}{\frac{8}{3}} = \frac{z-2}{\frac{2}{3}}$$

or.

$$\frac{3(x-2)}{5} = \frac{3(y-1)}{4} = \frac{3(z-2)}{1}$$

(A)
$$-\frac{3}{2}$$

$$l_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

Any point on l_1 is $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$

$$l_2: \frac{x-4}{5} = \frac{y-1}{2} = \frac{z-0}{1} = \mu$$

Any point on l_2 is $(5\mu + 4, 2\mu + 1, \mu)$

For point of intersection,

$$2\lambda + 1 = 5\mu + 4, 3\lambda + 2 = 2\mu + 1$$

Solving, $\lambda = \mu = -1$

Since, $\lambda = \mu = -1$ satisfy $4\lambda + 3 = \mu$

∴ Point of intersection is (-1,-1,-1)

Now distance of (-1, -5, -10) from (-1, -1, -1) is:

$$\sqrt{(-1+1)^2+(-1+5)^2+(-1+10)^2} = \sqrt{97}$$
 units

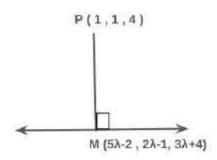
Ç

Given lines are $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\vec{r} = (15\hat{i} + 29\hat{j} + 5\hat{k}) + \mu(3\hat{i} + 8\hat{j} - 5\hat{k})$

The first line in vector form is $\vec{r} = (8\hat{i} - 19\hat{j} + 10\hat{k}) + \lambda(3\hat{i} - 16\hat{j} + 7\hat{k})$

$$\vec{a}_1 = 8\hat{i} - 19\hat{j} + 10\hat{k}, \vec{a}_2 = 15\hat{i} + 29\hat{j} + 5\hat{k}$$

$$\vec{b}_1 = 3\hat{i} - 16\hat{j} + 7\hat{k}$$
, $\vec{b}_2 = 3\hat{i} + 8\hat{j} - 5\hat{k}$


$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix} = 24\hat{i} + 36\hat{j} + 72\hat{k}$$

:. Equation of line passing through (1, 2, -4) and parallel to \vec{b} is

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + t(24\hat{i} + 36\hat{j} + 72\hat{k}) \text{ or } \vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + t'(2\hat{i} + 3\hat{j} + 6\hat{k})$$

Cartesian form of line is $\frac{x-1}{24} = \frac{y-2}{36} = \frac{z+4}{72}$ or $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$

10	$\begin{split} &l_1: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{4} \; ; \; l_2: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z+2}{-3} \\ &(i) \operatorname{Drsof} I_1 \operatorname{are} < 3, -2, 4 > , \operatorname{drsof} I_2 \operatorname{are} < 2, 1, -3 > \\ &\operatorname{as} \operatorname{drs are not proportional, hence} I_1 \operatorname{is not parallel} \operatorname{to} I_2. \\ &(ii) \operatorname{Equations of line parallel to} I_1 \operatorname{and passing through} (1, -2, -3) \operatorname{is} \\ &\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z+3}{4} \operatorname{or} \vec{r} = (\hat{i}-2\hat{j}-3\hat{k}) + \lambda \left(3\hat{i}-2\hat{j}+4\hat{k}\right) \\ & (iii)(a) \text{ The pathway is perpendicular to} I_1 \operatorname{and} I_2 \operatorname{It is parallel to} \vec{b_1} \times \vec{b_2} \\ & \vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & 4 \\ 2 & 1 & -3 \end{vmatrix} = 2\hat{i} + 17\hat{j} + 7\hat{k} \\ & \therefore \operatorname{Equation of pathway is } \vec{r} = \left(3\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda \left(2\hat{i} + 17\hat{j} + 7\hat{k}\right) \\ &(iii)(b) \vec{a_1} = 2\hat{i} - \hat{j} + 3\hat{k}, \vec{a_2} = \hat{i} + 3\hat{j} - 2\hat{k} \\ &\vec{b_1} = 3\hat{i} - 2\hat{j} + 4\hat{k}, \vec{b_2} = 2\hat{i} + \hat{j} - 3\hat{k} \\ &d = \left \frac{(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})}{ \vec{b_1} \times \vec{b_2} } \right \\ &= \frac{\left (-\hat{i} + 4\hat{j} - 5\hat{k}) \cdot (2\hat{i} + 17\hat{j} + 7\hat{k})\right }{ \vec{b_1} \times \vec{b_2} } \end{aligned}$
11	$= \frac{\left \frac{(-\hat{i} + 4\hat{j} - 5\hat{k}) \cdot (2\hat{i} + 17\hat{j} + 7\hat{k})}{\sqrt{4 + 289 + 49}}\right }{\sqrt{4 + 289 + 49}}$ $= \frac{31}{\sqrt{342}}$ (D) $\pm \frac{1}{\sqrt{2}}$
12	(B) (0, 3, 0)
13	(a) Let $\frac{x+2}{5} = \frac{y+1}{2} = \frac{z-4}{3} = \lambda$
	Coordinate of general point on the given line are $M(5\lambda - 2, 2\lambda - 1, 3\lambda + 4)$

Direction Ratios of PM vector are $< 5\lambda - 3$, $2\lambda - 2$, $3\lambda >$

Since, PM $\perp l$

$$\Rightarrow 5(5\lambda - 3) + 2(2\lambda - 2) + 3(3\lambda) = 0$$

$$\Rightarrow \lambda = \frac{1}{2}$$

Hence, coordinates of M are $(\frac{1}{2}, 0, \frac{11}{2})$

OR

(b) Equation of given line be $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-4}{3} = \lambda (say)$

Coordinate of any general point on the line are $P(3\lambda + 1, 2\lambda - 1, 3\lambda + 4)$.

Let distance of point P from (-1, -1, 2) is $2\sqrt{2}$.

$$\Rightarrow \sqrt{(3\lambda+2)^2+(2\lambda)^2+(3\lambda+2)^2}=2\sqrt{2}$$

$$\Rightarrow 22\lambda^2 + 24\lambda = 0$$

$$\Rightarrow \lambda = 0 \text{ or } \lambda = -\frac{12}{11}$$

Hence, coordinates of point P are (1,-1,4) or $\left(-\frac{25}{11},-\frac{35}{11},\frac{8}{11}\right)$

$$\vec{b}_{1} = 3\hat{i} - \hat{j}, \vec{b}_{2} = 2\hat{i} + 3\hat{k}, \vec{a}_{2} = 4\hat{i} - \hat{k}, \vec{a}_{1} = \hat{i} + \hat{j} - \hat{k}$$

$$(\vec{a}_{2} - \vec{a}_{1}) = 3\hat{i} - \hat{j}$$

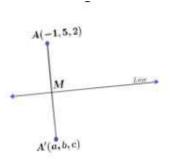
$$\vec{b}_{1} \times \vec{b}_{2} = -3\hat{i} - 9\hat{j} + 2\hat{k}$$

$$(\vec{a}_{2} - \vec{a}_{1}).(\vec{b}_{1} \times \vec{b}_{2}) = (3\hat{i} - \hat{j}).(-3\hat{i} - 9\hat{j} + 2\hat{k}) = 0, \text{ hence lines intersect}$$

15	(a) Let $\overrightarrow{a}_2 = 2\hat{i} + 4\hat{j} - \hat{k}$, $\overrightarrow{a}_1 = -5\hat{i} - 3\hat{j} + 6\hat{k}$ and $\overrightarrow{b} = \hat{i} + 4\hat{j} - 9\hat{k}$
	Distance between point and line is given by $d = \frac{ (\vec{a_2} - \vec{a_1}) \times \vec{b} }{ \vec{b} }$
	Here $(\overrightarrow{a}_2 - \overrightarrow{a}_1) = 7\hat{i} + 7\hat{j} - 7\hat{k}$
	$(\overrightarrow{a}_2 - \overrightarrow{a}_1) \times \overrightarrow{b} = -35 \hat{i} + 56 \hat{j} + 2 1 \hat{k}$
	$d = \frac{49\sqrt{2}}{7\sqrt{2}} = 7$
	OR
	(b) Vector parallel to given line = $3\hat{j} + 4\hat{k}$
	Vector equation is $\vec{r} = 3\hat{i} - \hat{j} - 2\hat{k} + \mu(3\hat{j} + 4\hat{k})$
	Cartesian equation is $\frac{x-3}{0} = \frac{y+1}{3} = \frac{z+2}{4}$ Equation of given line is $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$
16	
	Let coordinates of point on the line be $(\lambda, 2\lambda + 1, 3\lambda + 2)$ for some λ
	Drs of line perpendicular to line along mirror are $<\lambda$ -1, 2λ - 5, 3λ - 1>
	$(\lambda-1).1 + (2\lambda - 5).2 + (3\lambda - 1).3 = 0$ gives $\lambda = 1$
	Coordinates of foot of perpendicular are (1,3,5)
	For image
	$\frac{x+1}{2} = 1$, $\frac{y+6}{2} = 3$, $\frac{z+3}{2} = 5$ gives image as $(1, 0, 7)$
	Required distance = $\sqrt{0 + 36 + 16} = 2\sqrt{13}$
17	$l_1: \frac{x-1}{3} = \frac{y-\frac{2}{3}}{\frac{2}{3}\lambda} = \frac{z-3}{3}$
	$\frac{1}{3} - \frac{2}{3\lambda} - \frac{2}{3}$
	$\mathbf{z} - \frac{5}{\mathbf{c}}$
	$l_2: \frac{x-1}{3\lambda} = \frac{y-1}{-1} = \frac{z-\frac{5}{2}}{\frac{3}{2}}$
	2
	lines are perpendicular $\Rightarrow 3(3\lambda) + \frac{2}{3}\lambda(-1) + 3 \cdot \frac{3}{2} = 0$
	$\lambda = \frac{-27}{50}$
18	
10	Let $l: \frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11} = \lambda$
	Coordinates of any point on /are $x=10\lambda+11$, $y=-4\lambda-2$, $z=-11\lambda-8$
	Drs of perpendicular line are $(10\lambda + 9, -4\lambda - 1, -11\lambda - 13)$
	Drs of given line are 10, – 4, – 11
	As lines are perpendicular, so

	$(10\lambda + 9)10 + (-4\lambda - 1)(-4) + (-11\lambda - 13) \times (-11) = 0$		
	$\Rightarrow \lambda = -1$		
	Hence coordinates of point are $(1, 2, 3)$ which is the foot of the \perp from P to I.		
	length of $\perp = \sqrt{(1-2)^2 + (2+1)^2 + (3-5)^2} = \sqrt{1+9+4} = \sqrt{14}$		
19	Drs of line passing through points A and B are < 4,6,2>		
	Drs of line passing through C and D are <-7, -5, 0>		
	.V . V . V . V . 7 . 7		
	Consider $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 3 - 0 & 9 - (-1) & 4 - (-1) \\ 4 & 6 & 2 \\ -7 & -5 & 0 \end{vmatrix}$		
	Consider $\begin{vmatrix} a_1 \\ b_1 \end{vmatrix} = \begin{vmatrix} a$		
	$\begin{bmatrix} 1 & a_2 & b_2 & c_2 & 1 & 1 & -7 & -5 & 0 & 1 \end{bmatrix}$		
	= 3(+10) -10(+14) +5(22)		
	$= 3(+10) \cdot 10(+14) + 3(22)$ = 0		
	_ 0		
	Hence lines intersect each other		
20			
	(b) The two given lines are parallel with,		
	$\vec{a}_1 = 2\hat{i} - \hat{j} + 3\hat{k}, \ \vec{a}_2 = \hat{i} + 4\hat{k}$		
	Then $\vec{a}_2 - \vec{a}_1 = -\hat{i} + \hat{j} + \hat{k}$ and the parallel vector is $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$		
	\$ 50 may 10 may		
	i j k		
	$\vec{\mathbf{b}} \times (\vec{\mathbf{a}}, -\vec{\mathbf{a}},) = \begin{vmatrix} 1 & -2 & 3 \end{vmatrix} = -5\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - \hat{\mathbf{k}}$		
	$\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ -1 & 1 & 1 \end{vmatrix} = -5\hat{i} - 4\hat{j} - \hat{k}$		
	Shortest Distance = $\frac{\left \vec{\mathbf{b}} \times (\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1)\right }{\left \vec{\mathbf{b}}\right } = \frac{\sqrt{42}}{\sqrt{14}} = \sqrt{3}$		
	$ \vec{\mathbf{b}} = \sqrt{14}$		
21	(a) The general point on the line $(3\lambda-2,2\lambda-1,2\lambda+3)$ is Q, from some $\lambda \in \mathbb{R}$		
	The state of the s		
	$PQ = 3\sqrt{2} \Rightarrow (PQ)^2 = 18 \Rightarrow (3\lambda - 3)^2 + (2\lambda - 3)^2 + (2\lambda)^2 = 18$		
	$17\lambda^2 - 30\lambda = 0 \Rightarrow \lambda = 0 \text{ or } \lambda = \frac{30}{17}$		
	$1/k - 30k - 0 \Rightarrow k - 0 \text{ of } k - \frac{17}{17}$		
	$(56 \ 43 \ 111)$		
	Thus, the point is $Q(-2,-1,3)$ or $Q(\frac{56}{17},\frac{43}{17},\frac{111}{17})$		
	OR		
	(b) Let $A'(a,b,c)$ be the image of the point $A(-1,5,2)$ in the given line, also assume		
	'M' as the point of intersection of AA' with the given line, then 'M' is the mid-point		
	of the line segment AA'		
	x-2 y z-2		
	The Line in the standard form is: $\frac{x-2}{1} = \frac{y}{2} = \frac{z-2}{-3}$, then		
1	A CONTRACTOR OF THE CONTRACTOR		

Page- [127]


M is the point $(\lambda+2,2\lambda,-3\lambda+2)$, for some $\lambda \in R$

AM
$$\perp$$
 Line, $\therefore 1(\lambda+3)+2(2\lambda-5)-3(-3\lambda)=0 \Rightarrow \lambda=\frac{1}{2}$

$$M\left(\frac{5}{2},1,\frac{1}{2}\right)=M\left(\frac{a-1}{2},\frac{b+5}{2},\frac{c+2}{2}\right)\Rightarrow a=6,b=-3,c=-1$$

∴ The Image of A in the line is A'(6,-3,-1)

And,
$$AA' = \sqrt{49 + 64 + 9} = \sqrt{122}$$

$$2x = 3y = -z$$
 => $\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$

$$6x = -y = -4z = \frac{x}{2} = \frac{y}{-12} = \frac{z}{-3}$$

$$\cos \theta = \frac{3 \times 2 + 2 \times (-12) - 6 \times (-3)}{\sqrt{3^2 + 2^2 + (-6)^2} \sqrt{2^2 + (-12)^2 + (-3)^2}}$$

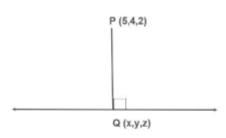
$$3 \times 2 + 2 \times (-12) - 6 \times (-3) = 0 : \theta = \frac{\pi}{2}$$

$$\overrightarrow{a_1} = 4t - f + 2k \qquad \overrightarrow{b_1} = t + 2f - 3k$$

$$\overrightarrow{a_2} = 2t + f - k \qquad \overrightarrow{b_2} = 3t + 2f - 4k$$

$$\overrightarrow{a_2} - \overrightarrow{a_1} = -2\mathbf{\hat{r}} + 2\mathbf{\hat{r}} - 3\mathbf{\hat{k}}$$

$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{t} & \hat{f} & \hat{k} \\ 1 & 2 & -3 \\ 3 & 2 & -4 \end{vmatrix} = -2\hat{t} - 5\hat{f} - 4\hat{k}$$


$$|\overrightarrow{b_1} \times \overrightarrow{b_2}| = \sqrt{4+25+16} = \sqrt{45} = 3\sqrt{5}$$

$$(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) = 4 - 10 + 12 = 6$$

$$SD = \left| \frac{(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right| = \frac{6}{3\sqrt{5}} = \frac{2}{\sqrt{5}}$$

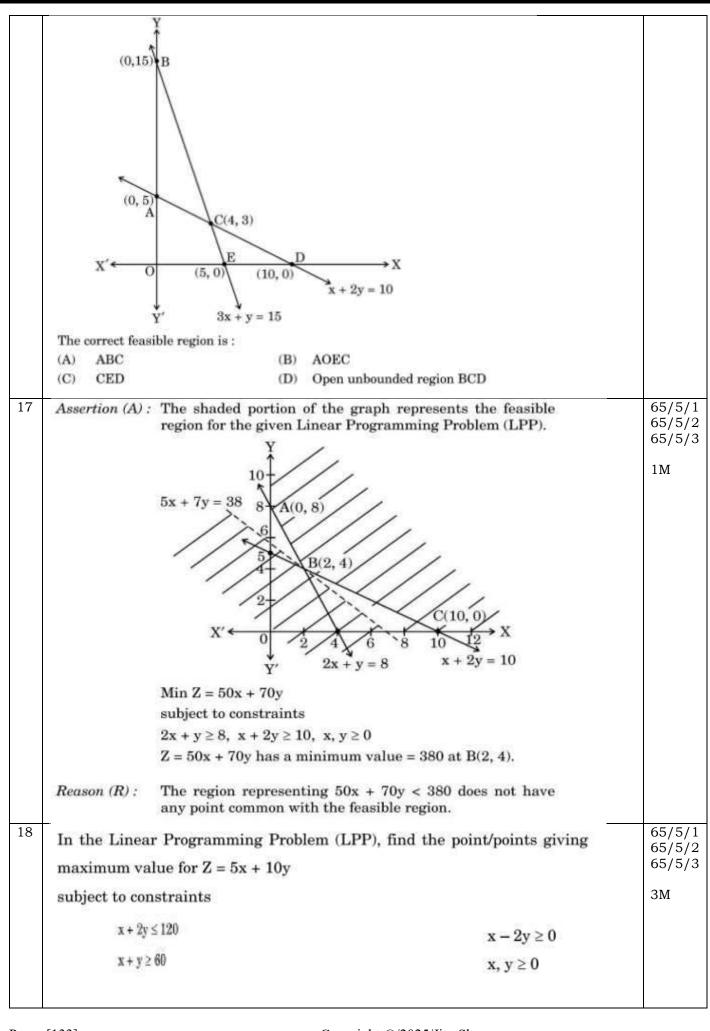
OR

(b)

Let coordinates of Q be $(2\lambda - 1, 3\lambda + 3, 1 - \lambda)$

D. Ratios of PQ $\langle 2\lambda - 6, 3\lambda - 1, -1 - \lambda \rangle$

$$\Rightarrow \lambda = 1$$


Foot of perpendicular is Q(1, 6, 0)

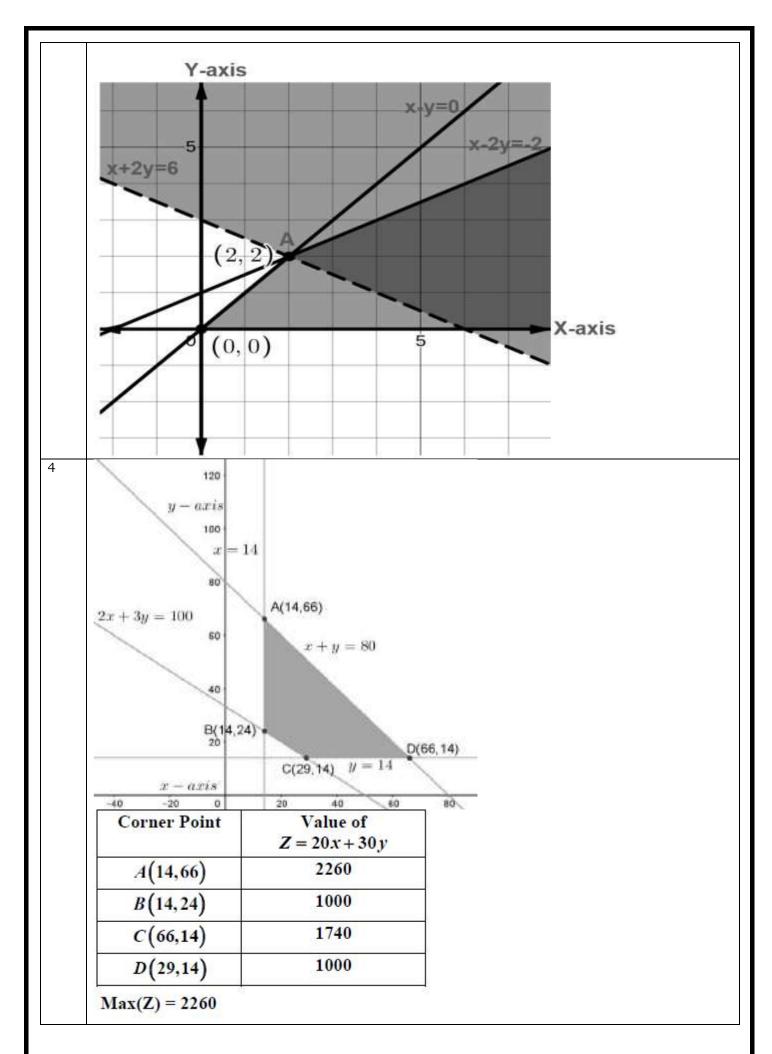
Length of perpendicular =
$$\sqrt{(4)^2 + (-2)^2 + (2)^2}$$

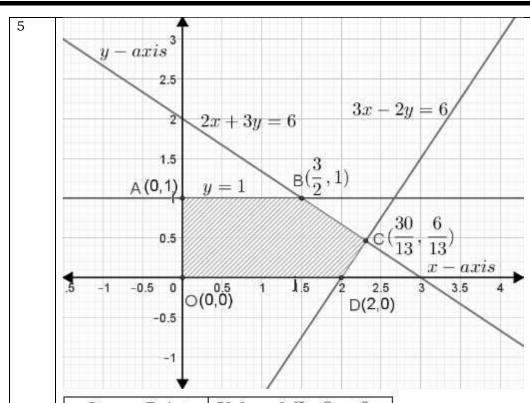
= $\sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6}$

Q		Code
Q		and
1		Marks
1	The corner points of the feasible region in graphical representation of a L.P.P. are $(2, 72)$, $(15, 20)$ and $(40, 15)$. If $Z = 18x + 9y$ be the objective	65/1/2
	function, then	65/1/3
	 (A) Z is maximum at (2, 72), minimum at (15, 20) (B) Z is maximum at (15, 20) minimum at (40, 15) 	1M
	(C) Z is maximum at (40, 15), minimum at (15, 20)	
	(D) Z is maximum at (40, 15), minimum at (2, 72)	65 /1 /2
2	If the feasible region of a linear programming problem with objective function $Z = ax + by$, is bounded, then which of the following is correct?	65/1/2 65/1/2
	(A) It will only have a maximum value.	65/1/3
	(B) It will only have a minimum value. (C) It will have both maximum and minimum values.	1M
	(D) It will have neither maximum nor minimum value.	
3	Solve the following linear programming problem graphically:	65/1/1
	Maximise $Z = x + 2y$	
	Subject to the constraints:	3M
	$x-y \ge 0$	
	$x-2y \ge -2$	
	$x \ge 0, y \ge 0$	
4	Solve the following linear programming problem graphically:	65/1/2
	Maximise Z = 20x + 30y	
	Subject to the constraints:	3M
	$x + y \le 80$	
	$2x + 3y \ge 100$	
	$x \ge 14$	
	y ≥ 14	_
5	Solve the following linear programming problem graphically:	65/1/3
	Maximize $Z = 8x + 9y$	ЗМ
	Subject to the constraints:	
	$2x + 3y \le 6$	
	$3x - 2y \le 6$	
	$y \le 1$	
	$x \ge 0, y \ge 0$	
6	A factory produces two products X and Y. The profit earned by selling X	65/2/3
	and Y is represented by the objective function $Z = 5x + 7y$, where x and y	65/2/2 65/2/3
	are the number of units of X and Y respectively sold. Which of the following statement is correct?	
	(A) The objective function maximizes the difference of the profit earned	1M
	from products X and Y.	
	(B) The objective function measures the total production of products X and Y.	

	(C) The objective function maximizes the combined profit earned from selling X and Y. (D) The objective function ensures the company produces more of product X than product Y.	
7	Assertion (A): Every point of the feasible region of a Linear Programming Problem is an optimal solution. Reason (R): The optimal solution for a Linear Programming Problem exists only at one or more corner point(s) of the feasible	65/2/1 65/2/2 65/2/3 1M
8	Solve the following linear programming problem graphically :	65/2/1
	Minimise $Z = x - 5y$ subject to the constraints: $x - y \ge 0$ $-x + 2y \ge 2$ $x \ge 3, y \le 4, y \ge 0$	3M
9	100 Y	65/2/2 3M
	-30 -20 -10 0 10 20 30 D 0 50 60 70 80 90 100 116 120 eq3	
	The feasible region along with corner points for a linear programming problem are shown in the graph. Write all the constraints for the given linear programing problem.	
10	Solve the following linear programming problem graphically : Minimise $Z = 2x + y$ subject to the constraints : $3x + y \ge 9$ $x + y \ge 7$ $x + 2y \ge 8$ $x, y \ge 0$	65/2/3 3M
11	The corner points of the feasible region of a Linear Programming Problem are $(0, 2)$, $(3, 0)$, $(6, 0)$, $(6, 8)$ and $(0, 5)$. If $Z = ax + by$; $(a, b > 0)$ be the objective function, and maximum value of Z is obtained at $(0, 2)$ and $(3, 0)$, then the relation between a and b is:	65/4/1 65/4/2 65/4/3 1M
Page-	(A) a = b (C) b = 6a (D) 3a = 2b Copyright-©/2025/Jitu Sharma	

12	Assertion (A): In a Linear Programming Problem, if the feasible resistency, then the Linear Programming Problem has solution.	0.3/4/2
	Reason (R): A feasible region is defined as the region that satisfies the constraints.	s all
13	Solve the following Linear Programming Problem using graphical met	hod: 65/4/1
	Maximise $Z = 100x + 50y$	ЗМ
	subject to the constraints	
	$3x + y \le 600$	
	$x + y \le 300$	
	$y \le x + 200$	
	$x \ge 0, y \ge 0$	
14	Solve the following Linear Programming Problem graphically :	65/4/2
	Minimise $Z = 3x + 5y$	ЗМ
	subject to the constraints $x + 2y \ge 10$	
	$x + y \ge 6$	
	$3x + y \ge 8$	
15	x, y ≥ 0	65/4/3
	300	3M
	B (50, 250)	
	200 A(0, 200)	
	C(150, 150)	
	100	
	O(0, 0) D(200, 0) C(0, 0) D(200, 0)	
	\$200 -150 -100 -50 0 50 100 150 200 250 300 350 400°	
	-100	
	-200 ‡	
	For the given graph of a Linear Programming Problem, write all the constraints satisfying the given feasible region.	
16	For a Linear Programming Problem (LPP), the given objective function $Z = 3x + 2y$ is subject to constraints:	65/5/1 65/5/2 65/5/3
	$x + 2y \le 10$ $3x + y \le 15$	
	$x, y \ge 0$	1M

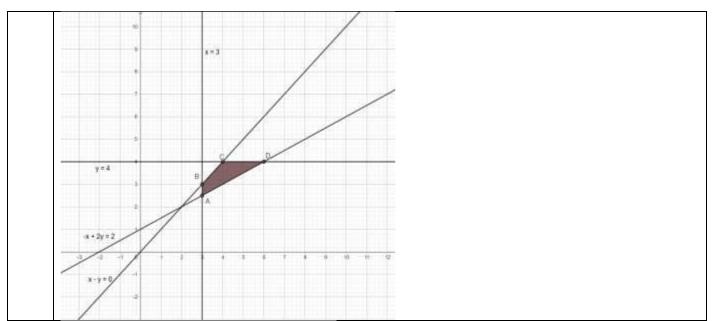



19	For a Linear Programming Problem (LPP), the given objective function is	65/6/1
	Z = x + 2y. The feasible region PQRS determined by the set of constraints	65/6/2
	is shown as a shaded region in the graph.	65/6/3
	v	1M
	1	
	(0. 15)	
	$Q\left(\frac{3}{2},\frac{15}{4}\right)$	
	242	
	13/3 3//////	
	3 3///////////////////////////////////	
	$\mathbb{R}(\frac{7}{2},\frac{3}{4})$	
	(2 4)	
	$S(\frac{18}{7},\frac{2}{7})$	
	√ 0	
	(Note: The figure is not to scale)	
	$(3.24) \circ (3.15) \circ (7.3) \circ (18.2)$	
	$P = \left(\frac{3}{13}, \frac{24}{13}\right), Q = \left(\frac{3}{2}, \frac{15}{4}\right), R = \left(\frac{7}{2}, \frac{3}{4}\right), S = \left(\frac{18}{7}, \frac{2}{7}\right)$	
	Which of the following statements is correct?	
	(A) Z is minimum at $S\left(\frac{18}{7}, \frac{2}{7}\right)$	
	(A) Z is minimum at $S\left(\frac{1}{7}, \frac{1}{7}\right)$	
	(B) Z is maximum at $R\left(\frac{7}{2}, \frac{3}{4}\right)$	
	(B) Z is maximum at $R\left(\frac{1}{2}, \frac{1}{4}\right)$	
	(C) (Value of Z at P) > (Value of Z at Q)	
	(D) (Value of Z at Q) < (Value of Z at R)	
20	In a Linear Programming Problem (LPP), the objective function	65/6/1
	Z = 2x + 5y is to be maximised under the following constraints:	65/6/2
	$x + y \le 4$, $3x + 3y \ge 18$, $x, y \ge 0$	65/6/3
	Study the graph and select the correct option.	1M
	_ 1 ^Y	
	₩ ^ =	
	B E	
	$X' \leftarrow O$	
	3x + 3y = 18	
	1 "////// *	
	x + y = 4	
	(Note: The figure is not to scale)	
	The solution of the given LPP:	
	(A) lies in the shaded unbounded region.	
	(B) lies in Δ AOB.	
	 (C) does not exist. (D) lies in the combined region of Δ AOB and unbounded shaded 	
	(D) lies in the combined region of Δ AOB and unbounded shaded region.	

21	Consider the Linear Programming Problem, where the objective function $Z = (x + 4y)$ needs to be minimized subject to constraints	65/6/1 65/6/2 65/6/3
	$2x + y \ge 1000$	3M
	$x + 2y \ge 800$	
	$x, y \ge 0$. Draw a neat graph of the feasible region and find the minimum value of Z.	
22	In a Linear Programming Problem, the objective function $Z = 5x + 4y$ needs	65/7/1
	to be maximised under constraints $3x + y \le 6$, $x \le 1$, $x, y \ge 0$. Express the	2M
	LPP on the graph and shade the feasible region and mark the corner points.	
23	In the Linear Programming Problem for objective function $Z=18x+10y$ subject to constraints	65/7/1 65/7/2 65/7/3
	$4x + y \ge 20$	
	$2x + 3y \ge 30$	
	$x, y \ge 0$	3M
	find the minimum value of Z.	
24	In a Linear Programming Program (LPP) for objective function	65/7/2
	Z = 14x - 10y	2M
	subject to constraints	
	$x + y \le 8$	
	$3x - 2y \ge -6$	
	$x, y \ge 0$	
	shade the feasible region and mark the corner points in a neatly drawn	
	graph.	
25	For a Linear Programming Problem, find min $Z = 5x + 3y$ (where Z is the objective function) for the feasible region shaded in the given figure.	65/7/3 2M
	v	
	^	
	B	
	C A	
	X'← → X	
	0	
	x + 3y = 9	
	\mathbf{Y}' $\mathbf{x} + \mathbf{y} = 5$	
	(Note: The figure is not to scale)	

26	Of all the points of the feasible re	gion, for maximum or minimum	65(B)
	values of the objective function, the	e point lies :	
	(A) inside the feasible region		1M
	(B) at the boundary line of the fe	asible region	
	(C) at the corner points of the fea	asible region	
	(D) at the coordinate axes		
27	The common region for the inequ	alities $x \ge 0$, $x + y \le 1$ and $y \ge 0$,	65(B)
	lies in		1M
	(A) IV Quadrant (B) II Quadrant	
	(C) III Quadrant (D) I Quadrant	
28	The corner points of the feas	sible region determined by some	65(B)
	system of linear inequations, are (0, 0), (5, 0), (3, 4) and (0, 5). Let		ЗМ
		d the condition on a and b so that	
	the maximum of Z occurs at both	h points (3, 4) and (0, 5).	

	ANSWERS	
(C) Z is ma	aximum at (40, 15), minimum at (15, 20	0)
(C) It will h	have both maximum and minimum val	ues
Corner Point	Value of $Z=x+2y$	
O(0,0)	0	
A(2,2)	6	
	tion is unbounded. Plot $x + 2y > 6$ which has common region, thus $oldsymbol{Z}$ has no maximum value.	


Corner Point	Value of $Z = 8x + 9y$
A(0,1)	9
$B\left(\frac{3}{2},1\right)$	21
$C\left(\frac{30}{13},\frac{6}{13}\right)$	$\frac{294}{13}$
D(2,0)	16
O(0,0)	0

$$Max(Z) = \frac{294}{13}$$

- 6 (C) The objective function maximizes the combined profit earned from selling X and Y
- 7 (D) Assertion (A) is false and Reason (R) is true.

Corner point	Value of $Z = x - 5y$
A (3, 2.5)	-9.5
B (3, 3)	-12
C (4, 4)	-16
D (6, 4)	-14

The minimum value of Z is -16, which is attained at x = 4, y = 4.

The equation of the line AB is

$$y - 30 = \frac{25-30}{15-0}(x-0)$$

$$\Rightarrow$$
 x + 3y = 90

The equation of the line BC is

$$y - 10 = \frac{10-25}{30-15}(x-30)$$

$$\Rightarrow x + y = 40$$

The equation of the line CD is

$$y - 10 = \frac{70-10}{0-30}(x-30)$$

$$\Rightarrow$$
 2x + y = 70

Hence, the constraints are

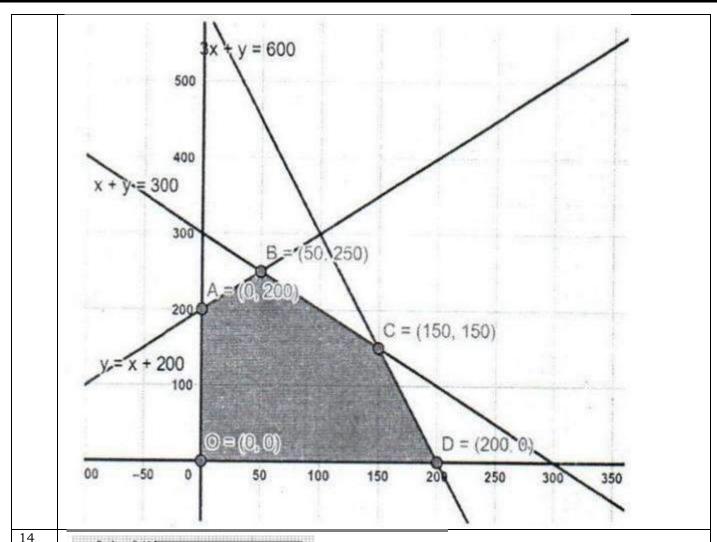

$$x + 3y \le 90, x + y \le 40,2x + y \le 70$$

$$x \ge 0, y \ge 0$$

10

Corner point	Value of $Z = 2x + y$
A(0, 9)	9
B(1, 6)	8
C(6, 1)	13
D(8, 0)	16

In the half-plane 2x + y < 8, there is no point in common with the feasible region. Hence, the minimum value of Z is 8, which is attained at x = 1, y = 6.


(D) 3a = 2b

(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).

13

Corner Point	Value of $Z = 100x + 50y$
O(0,0)	0
A(0,200)	10000
B(50, 250)	17500
C(150,150)	22500
D(200,0)	20000

 $Z_{\text{max}} = 22500 \text{ when } x = 150, y = 150$

Corner Point	Value of $Z = 3x + 5y$
A(0,8)	40
B(1,5)	28
C(2,4)	26
D(10,0)	30

3x + 5y < 26 has no common region with the feasible region.

$$\therefore Z_{\min} = 26$$

Equation of AB:

$$y-200 = \frac{250-200}{50-0}(x-0)$$
 i.e. $-x+y=200$

Equation of BC:

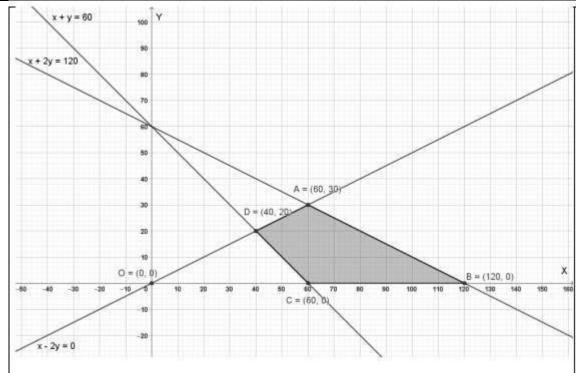
$$y-250 = \frac{150-250}{150-50} (x-50)$$
 i.e. $x+y=300$

Equation of CD:

$$y-0=\frac{0-150}{200-150}(x-200)$$
 i.e. $3x+y=600$

Required constraints are:

$$-x+y \le 200$$

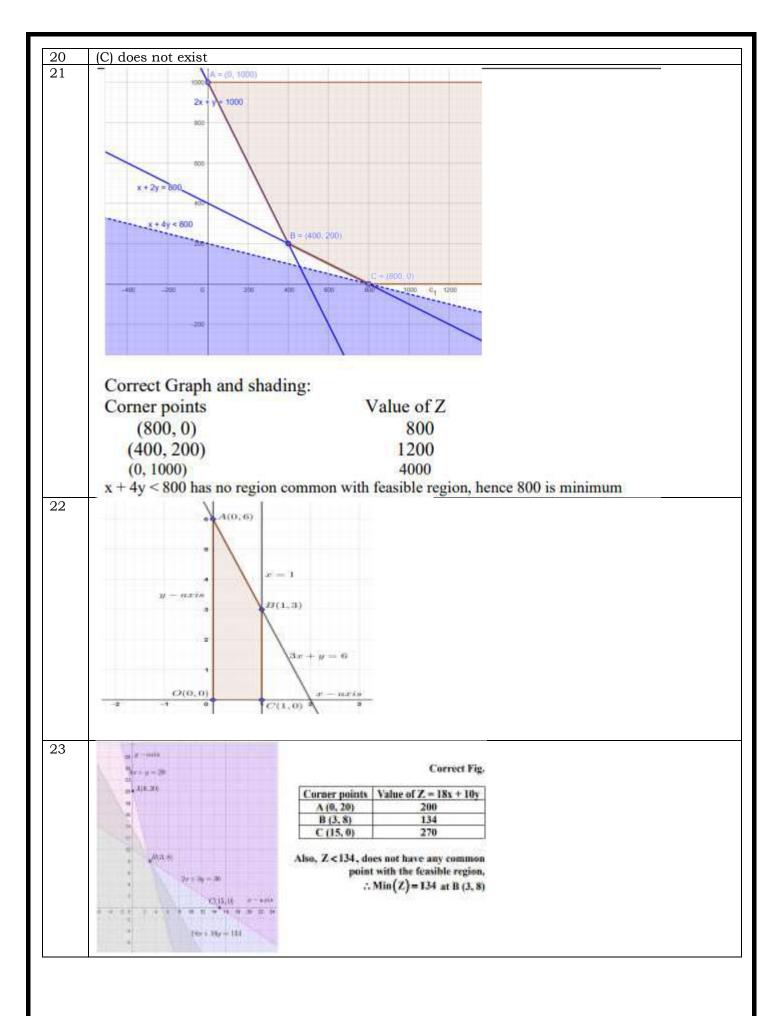

$$x + y \le 300$$

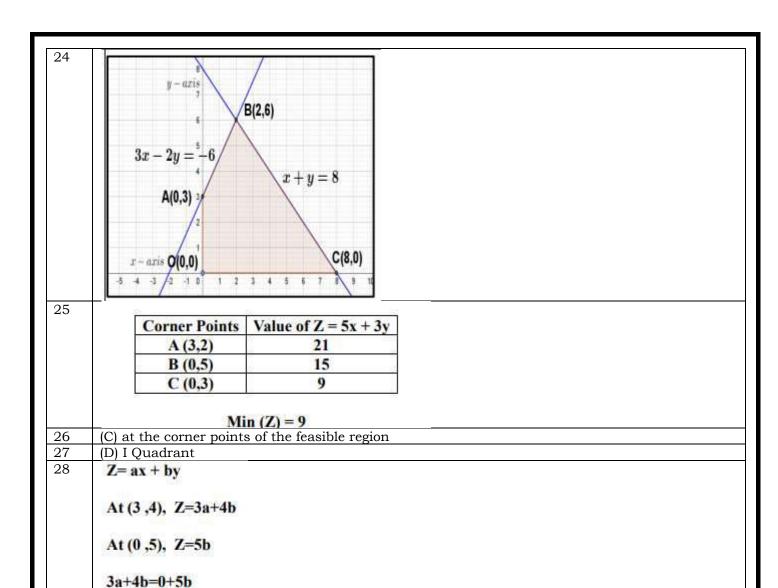
$$3x + y \le 600$$

$$x \ge 0, y \ge 0$$

16 (B) AOEC

17 (A) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A)




Value of Z
600
600
300
400

Since Z is maximum on points A and B

Hence all points lying on segment AB give maximum Z.

(A) Z is minimum at S $(\frac{18}{7}, \frac{2}{7})$

3a=b

CHAPTER 13 PROBABILITY	Code
	and Marks
If E and F are two independent events such that $P(E) = \frac{2}{3}$, $P(F) = \frac{3}{7}$, then	65/1/ 65/1/
$P(E/\overline{F})$ is equal to:	1M
(A) $\frac{1}{6}$ (B) $\frac{1}{2}$	
2 7	
(C) $\frac{2}{3}$ (D) $\frac{7}{9}$	
(a) The probability distribution for the number of students being absent in a class on a Saturday is as follows:	65/1/ 65/1/
X 0 2 4 5	65/1/
P(X) p 2p 3p p	
Where X is the number of students absent.	ЗМ
(i) Calculate p. 1	
(ii) Calculate the mean of the number of absent students on Saturday. 2	
OR OR	
third of the total applicants were females and other were males. The selection for the job was done through a written test. The performance of the applicants indicates that the probability of a male getting a distinction in written test is 0.4 and that a female getting a distinction is 0.35. Find the probability that the candidate chosen at random will have a distinction in the written test.	
random win have a distriction in the written test.	65/1/
	65/1/ 65/1/
%	, ,
% FATES RATES	4M
A bank offers loan to its customers on different types of interest namely,	
fixed rate, floating rate and variable rate. From the past data with the	
bank, it is known that a customer avails loan on fixed rate, floating rate	
or variable rate with probabilities 10%, 20% and 70% respectively. A	
customer after availing loan can pay the loan or default on loan	
repayment. The bank data suggests that the probability that a person	
defaults on loan after availing it at fixed rate, floating rate and variable	
rate is 5%, 3% and 1% respectively.	
AN ORDER OF A PROPERTY OF A CONTROL OF A CON	

	(i) What is the probability that a customer after availing the loan will default on the loan repayment?	
	(ii) A customer after availing the loan, defaults on loan repayment.	
	What is the probability that he availed the loan at a variable rate of interest?	
4	Let M and N be two events such that P(M) = 0.6, P(N) = 0.2 and	65/1/3
	$P(M \cap N) = 0.5$, then $P(M'/N')$ is	1M
	7 2 2 2	
	(A) $\frac{7}{8}$ (B) $\frac{2}{5}$	
	(C) $\frac{1}{2}$ (D) $\frac{2}{3}$	
5	If E and F are two events such that $P(E) > 0$ and $P(F) \neq 1$, then $P(\overline{E}/\overline{F})$ is	65/2/1 65/2/2 65/2/3
	(A) $\frac{P(E)}{P(\overline{F})}$ (B) $1 - P(\overline{E}/F)$	1M
	(C) $1 - P(E/F)$ (D) $\frac{1 - P(E \cup F)}{P(\overline{F})}$	
6	(a) A die with number 1 to 6 is biased such that $P(2) = \frac{3}{10}$ and probability of	65/2/1 65/2/2 65/2/3
	other numbers is equal. Find the mean of the number of times number 2 appears on the dice, if the dice is thrown twice. OR	3M
	(b) Two dice are thrown. Defined are the following two events A and B:	
	A = $\{(x, y) : x + y = 9\}$, B = $\{(x, y) : x \neq 3\}$, where (x, y) denote a point in	
	the sample space.	
	Check if events A and B are independent or mutually exclusive.	
7	Three persons viz. Amber, Bonzi and Comet are manufacturing cars which run on petrol and on battery as well. Their production share in the market is 60%, 30% and 10% respectively. Of their respective production capacities, 20%, 10% and 5% cars respectively are electric (or battery operated). Based on the above, answer the following:	65/2/1 65/2/2 65/2/3 4M
	(i) (a) What is the probability that a randomly selected car is an electric car?	
	(i) (b) What is the probability that a randomly selected car is a petrol car?	
	(ii) A car is selected at random and is found to be electric. What is the	
	probability that it was manufactured by Comet? (iii) A car is selected at random and is found to be electric. What is the probability that it was manufactured by Amber or Bonzi?	

8	In the follow	wing prob	ability d	istribution.	the value of p is:		65/2/2
	X	0	1	2	3		65/2/3 1M
	P(X)	р	р	0.3	2p		
	(A) $\frac{7}{40}$			(F	3) $\frac{1}{10}$		
	(C) $\frac{9}{35}$			(I	$\frac{1}{4}$		
9	Assertion (A			re two ev dependent	ents such that $P(A \cap B) = 0$, events.	then A	65/4/1 65/4/2
10	Reason (R)	not e	effect the	e occurren	endent if the occurrence of or ce of the other.		65/4/2 1M
10	NY 100				of the number of boys in fan equal probability for a boy a		65/4/1 65/4/2
	-	0	R				3M
11	numb distri Some stude	per of head bution of nts are ha	ads min X and a aving a	us numbe lso find its misconcept	ion while comparing decimal	bility s. For	
	order to ass to the st	ess this oudents	concept, of class	a decimal VI thr	t 78·56 > 78·9 as 7856 > 78 comparison test was administ ough the following questi school, 5 students participated	stered ion :	65/4/1 65/4/2 65/4/3
		w compe	tition. T	he distanc	es to which they have throw		4M
	Name of	student	Dista	nce of jave	lin (in meters)		
	Aja	ay		47	7		
	Bije	oy		47.	07		
	Kar	tik		43.	09		
	Dine	esh		43	9		
	Deve	esh		45	2		
	farthest. Based on the 40% of the comparison students hav	e test atte students and the ving misco 90% of th	empted b have the rest do onception he stude	y the stude misconcer not have a answered ents who a	ents, the teacher concludes that the price of decimal the misconception. 80% of the Bijoy as the correct answer in the identified with not having a peir answer.	t dl e n	
	On the basis	of the ab	ove info	mation, ar	nswer the following questions :		
		is the pronswers Bi			ent not having misconception	but 1	
Page-	[1 <i>17</i>]			Con	vright-©/2025/Jitu Sharma		

(i	ii)				babilit wer in			omly selected student answers		
(i	iii)			ving n	niscon		the state of the s	student who answered as Bijoy 2		
(i	iii)				e prob			student who answered as Bijoy thave the misconception?		
2 (8	a)	Consi	der the	e exper	riment	of toss	ing a coin	. If the coin shows head,	65/4/	
		condit	ional	probab	oility of	the e	vent A:	n throw a die. Find the the die shows a number east one tail'.	3M	
9600				OR						
(1	b)	The p	robabi	lity dis	tributio	on of a	random v	ariable X is given as :		
		X	1	2	3	2λ	3λ 4λ			
		P(X)	$\frac{11}{20}$	1 1 5	1 10	$\frac{3}{10}$	$\frac{1}{15}$ $\frac{1}{10}$			
		1222	30	15	10		15 10			
					if E(X) =	= 3·2.				
19	<i>(</i>)			P(X > 1)		11 11			65.4	
.((a)	The	prob	ability	y distr	ibutio	n of a ra	andom variable X is given by :	65/4/	
		X		0	1	2	3		3M	
		P	P(X)	p	p	p	p			
					$\frac{\mathbf{p}}{3}$	6	12			
		(i)	De	termi	ne the	value	e of p.	97		
		(ii)	Ca	lculat	e P(X	≥ 1).	8			
	(iii) Calculate expectation of X, i.e. E(X)									
	OR									
) ((b)	pref pref 20%	ferred ferred wase ando Th Th tra	d mod d using both p m, find te pers te pers	de of g public d the public son uses on use t.	commic trans trans probal es onl es a b	nuting. nsport, 3 sport and bility the y public icycle, g	ed among residents about their It was found that 50% people 85% preferred using a bicycle and It a bicycle. If a person is selected at: transport. iven that they also use the public blic transport nor a bicycle.		
1	lf P	$(A \cup E)$	3) = 0	9 and	P(A	∩ B) =	0.4, th	en $P(\overline{A}) + P(\overline{B})$ is:	65/5/	
((A)	0.3					(B)	1	65/5/ 65/5/	
((C)	1.3					(D)	0-7	1M	
(a	a)	CONTRACTOR OF	50) 1687 - 188	45			100000000	a colouring book is 0.7 and The probability that she buys	65/5, 65/5, 65/5,	
								그리는 아내 중에 가장에 되는 것이 되는 기업을 하는 것이 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	3M	
					hat the			s a box of colours, is 0-3. Find		
		the p	Tobab	mity ti	nat the	saudi	ent.			
		(i)	Buy	s both	the co	olourin	ng book a	and the box of colours.		

	(ii) Buys a box of colours given that she buys the colouring book.	
	OR	
	(b) A person has a fruit box that contains 6 apples and 4 oranges. He picks out a fruit three times, one after the other, after replacing	
	the previous one in the box. Find:	
	 The probability distribution of the number of oranges he draws. 	
	(ii) The expectation of the random variable (number of oranges).	
16	A gardener wanted to plant vegetables in his garden. Hence he bought 10 seeds of brinjal plant, 12 seeds of cabbage plant and 8 seeds of radish plant. The shopkeeper assured him of germination probabilities of brinjal, cabbage and radish to be 25%, 35% and 40% respectively. But before he could plant the seeds, they got mixed up in the bag and he had to sow them randomly. Radish Cabbage Brinjal Based upon the above information, answer the following questions: (i) Calculate the probability of a randomly chosen seed to germinate. (ii) What is the probability that it is a cabbage seed, given that the chosen seed germinates?	65/5/1 65/5/2 65/5/3 4M
17	A box has 4 green, 8 blue and 3 red pens. A student picks up a pen at random, checks its colour and replaces it in the box. He repeats this process 3 times. The probability that at least one pen picked was red is: (A) $\frac{124}{125}$ (B) $\frac{1}{125}$	65/6/1 1M
	(C) $\frac{61}{125}$ (D) $\frac{64}{125}$	
18	A person is Head of two independent selection committees I and II. If the probability of making a wrong selection in committee I is 0.03 and that in committee II is 0.01, then find the probability that the person makes the correct decision of selection:	65/6/1 3M
	(i) in both committees (ii) in only one committee	

19	A shop selling electronic items sells smartphones of only three reputed companies A, B and C because chances of their manufacturing a defective smartphone are only 5%, 4% and 2% respectively. In his inventory he has 25% smartphones from company A, 35% smartphones from company B and 40% smartphones from company C.	65/6/1 65/6/2 65/6/3 4M
	A person buys a smartphone from this shop.	
	(i) Find the probability that it was defective.	
	(ii) What is the probability that this defective smartphone was manufactured by company B?	
20	Chances that three persons A, B, and C go to the market are 30%, 60% and 50% respectively. The probability that at least one will go to the market is:	65/6/2 1M
	(A) $\frac{14}{10}$ (B) $\frac{43}{50}$	1 1/1
	(C) $\frac{9}{100}$ (D) $\frac{7}{50}$	
21	A coin is biased so that the head is 3 times as likely to occur as tail. If the	65/6/2
	coin is tossed three times, find the probability distribution of number of tails. Hence, find the mean of the distribution.	3M
22	A meeting will be held only if all three members A, B and C are present.	65/6/3
	The probability that member A does not turn up is 0·10, member B does not turn up is 0·20 and member C does not turn up is 0·05. The probability of the meeting being cancelled is:	1M
	(A) 0·35 (B) 0·316	
	(C) 0·001 (D) 0·65	
23	Bag I contains 4 white and 5 black balls. Bag II contains 6 white and	65/6/3
	7 black balls. A ball drawn randomly by from bag I is transferred to bag II and then a ball is drawn randomly from bag II. Find the probability that the ball drawn is white.	3M
24	If $P(A) = \frac{1}{7}$, $P(B) = \frac{5}{7}$ and $P(A \cap B) = \frac{4}{7}$, then $P(\overline{A} \mid B)$ is:	65/7/1
	7, 1(b) - 7 and 1(11) - 7, then 1(11) b)	1M
	(A) $\frac{6}{7}$ (B) $\frac{3}{4}$	
	(C) $\frac{4}{5}$ (D) $\frac{1}{5}$	
25	A coin is tossed and a card is selected at random from a well shuffled pack of 52 playing cards. The probability of getting head on the coin and a face card from the pack is:	65/7/1 65/7/2 65/7/3
	(A) $\frac{2}{13}$ (B) $\frac{3}{26}$	1M
	(C) $\frac{19}{26}$ (D) $\frac{3}{13}$	

26	(a) 10 identical blocks are marked with '0' on two of them, '1' on three of them, '2' on four of them and '3' on one of them and put in a box. If X denotes the number written on the block, then write the probability distribution of X and calculate its mean.	65/7/1 65/7/2 65/7/3 2M
	OR	
	(b) In a village of 8000 people, 3000 go out of the village to work and 4000 are women. It is noted that 30% of women go out of the village to work. What is the probability that a randomly chosen individual is either a woman or a person working outside the village?	
27	Based upon the results of regular medical check-ups in a hospital, it was found that out of 1000 people, 700 were very healthy, 200 maintained average health and 100 had a poor health record.	65/7/1 65/7/2 65/7/3
	Let A_1 : People with good health,	4M
	A_2 : People with average health,	
	and A_3 : People with poor health.	
	During a pandemic, the data expressed that the chances of people contracting the disease from category A_1 , A_2 and A_3 are 25%, 35% and 50%, respectively.	
	Based upon the above information, answer the following questions:	
	(i) A person was tested randomly. What is the probability that he/she has contracted the disease?	
	(ii) Given that the person has not contracted the disease, what is the probability that the person is from category A_2 ?	
28	If $P(A) = \frac{1}{5}$, $P(B) = \frac{3}{5}$ and $P\left(\frac{A}{B}\right) = \frac{2}{5}$, then $P(A' \cap B')$ is	65/7/2 1M
	(A) $\frac{11}{25}$ (B) $\frac{19}{25}$ (C) $\frac{8}{25}$ (D) $\frac{6}{25}$	
	(C) $\frac{8}{25}$ (D) $\frac{6}{25}$	
29	If A and B are two events such that $P(B) = \frac{1}{5}$, $P(A \mid B) = \frac{2}{3}$ and $P(A \cup B) = \frac{3}{5}$, then $P(A)$ is:	65/7/3 1M
	$\frac{1}{5}$, then $\frac{1}{5}$.	
	(A) $\frac{10}{15}$ (B) $\frac{2}{15}$	
	(C) $\frac{1}{5}$ (D) $\frac{8}{15}$	

A and B appeared for an interview for two vacancies. The	65(B)
probability of A's selection is $\frac{1}{5}$ and that of B's selection is $\frac{1}{3}$. The	1M
probability that none of them is selected is:	
(A) $\frac{11}{15}$ (B) $\frac{7}{15}$	
(C) $\frac{8}{15}$ (D) $\frac{1}{5}$	
(a) Find the probability distribution of the number of doublets in three throws of a pair of dice.	65(B) 3M
OR (b) If E and F are two independent events with P(E) = p, P(F) = 2p	
and P(exactly one of E, F) = $\frac{5}{9}$, then find the value of p.	
There are three categories of students in a class of 60 students: A: Very hardworking students, B: Regular but not so hard working, C: Careless and irregular students. It is known that 6 students in category A, 26 in category B and the rest in category C. It is also found that probability of students of category A, unable to get good marks in the final year examination, is 0.002, of category B it is 0.02 and of category C, this probability is 0.20. Based on the above information, answer the following: (i) Find the probability that a student selected at random is unable to get good marks in the final examination. (ii) A student selected at random was found to be one who could not get good marks in the final examination. Find the probability, that this student is NOT of category A.	65(B) 4M
ANSWERS	
(C) $\frac{2}{3}$ (i) Since $\sum P(X)=1 \Rightarrow p+2p+3p+p=1$ $\Rightarrow p = \frac{1}{7}$ (ii) Mean = $\sum X.P(X)=0(p)+2(2p)+4(3p)+5(p)$ $=21p=21\left(\frac{1}{7}\right)=3$	
OR	
Let E_1 : The applicant is a male E_2 : The applicant is a female A : The candidate chosen will have distinction in the written test. $P(E_1) = \frac{1}{3}, P(E_2) = \frac{2}{3}, P(A E_1) = 0.4, P(A E_2) = 0.35$ $\therefore P(A) = P(E_1)P(A E_1) + P(E_2)P(A E_2)$ $= \frac{1}{3} \times 0.4 + \frac{2}{3} \times 0.35$ $= \frac{11}{30}$	
	probability of A's selection is $\frac{1}{5}$ and that of B's selection is $\frac{1}{3}$. The probability that none of them is selected is: (A) $\frac{11}{15}$ (B) $\frac{7}{15}$ (C) $\frac{8}{815}$ (D) $\frac{1}{5}$ (a) Find the probability distribution of the number of doublets in three throws of a pair of dice. OR (b) If E and F are two independent events with P(E) = p, P(F) = 2p and P(exactly one of E, F) = $\frac{5}{9}$, then find the value of p. There are three categories of students in a class of 60 students: A: Very hardworking students, B: Regular but not so hard working, C: Careless and irregular students. It is known that 6 students in category A, 26 in category B and the rest in category C. It is also found that probability of students of category A, unable to get good marks in the final year examination, is 0.002, of category B it is 0.02 and of category C, this probability is 0.20. Based on the above information, answer the following: (i) Find the probability that a student selected at random is unable to get good marks in the final examination. (ii) A student selected at random was found to be one who could not get good marks in the final examination. Find the probability, that this student is NOT of category A. ANSWERS (C) $\frac{2}{3}$ (P) Since ∑P(X)=1⇒p+2p+3p+p=1 ⇒ p=1/p 21(1/7)=3 OR Let E, The applicant is a female 4. The candidate chosen will have distinction in the written test. P(E)=1/3, P(E)=2/3, P(A E,)=0.4, P(A E,)=0.35 ∴P(A)=P(E,)P(A E,)+P(A E,)+P(E,)P(A E,)

3	E_1 : customer avails loan on fixed rate
	E2 :customer avails loan on floating rate
	E ₃ :customer avails loan on variable rate
	A: the person defaults on the loan
	$P(E_1) = \frac{1}{10}, P(E_2) = \frac{2}{10}, P(E_3) = \frac{7}{10}$
	$P(A E_1) = \frac{5}{100}, P(A E_2) = \frac{3}{100}, P(A E_3) = \frac{1}{100}$
	$(i)P(A)=P(E_1).P(A E_1)+P(E_2).P(A E_2)+P(E_3).P(A E_3)$
	$=\frac{1}{10} \times \frac{5}{100} + \frac{2}{10} \times \frac{3}{100} + \frac{7}{10} \times \frac{1}{100}$
	75
	$=\frac{18}{1000} \text{ or } \frac{9}{500}$
	$(ii) P(E_3 A) = \frac{P(E_3).P(A E_3)}{P(E_1).P(A E_1) + P(E_2).P(A E_2) + P(E_3).P(A E_3)}$
	$\frac{7}{10} \times \frac{1}{100}$
	$=\frac{10^{2}100}{18}$
	1000
	$=\frac{7}{18}$
4	(A) $\frac{7}{}$
5	8 (D) 1-P(EUF)
	P(F)
6 (a)	$P(2) = \frac{3}{10}$, P(any other number) = $1 - \frac{3}{10} = \frac{7}{10}$
	Let X represent the Random Variable "the number of 2's".
	Then $X = 0, 1, 2$
	The probability distribution is
	STATE OF THE PROPERTY OF THE P
	X P(X) XP(X) 0 7 7 49 0
	1 3 7 42 42
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\overline{10} \times \overline{10} = \overline{100}$ $\overline{100}$
	Mean = $\sum XP(X) = \frac{60}{100} = 0.6$
	100
	OR
(b)	$A = \{(3,6), (4,5), (5,4), (6,3)\}$
	$P(A) = \frac{4}{36} = \frac{1}{9}, P(B) = \frac{30}{36} = \frac{5}{6}$
	$P(A \cap B) = \frac{3}{36} = \frac{1}{12}$
	$P(A) \times P(B) = \frac{5}{54} \neq P(A \cap B)$
	Therefore, A and B are not independent.

	A and B are not mutually exclusive as $A \cap B \neq \emptyset$
7. 1(A)(I)	Let A = Amber manufactures the car
	B = Bonzi manufactures the car
	C = Comet manufactures the car
	E = The selected car is electric
	$P(A) = \frac{60}{100}, P(B) = \frac{30}{100}, P(C) = \frac{10}{100}$
	$P(E) = P(A) \times P\left(\frac{E}{A}\right) + P(B) \times P\left(\frac{E}{B}\right) + P(C) \times P\left(\frac{E}{C}\right)$
	$= \frac{60}{100} \times \frac{20}{100} + \frac{30}{100} \times \frac{10}{100} + \frac{10}{100} \times \frac{5}{100}$
1(II)	$=\frac{155}{1000} \text{ or } \frac{31}{200}$
	OR
	Let A = Amber manufactures the car
	B = Bonzi manufactures the car
	C = Comet manufactures the car
	E = The selected car is a petrol car
	$P(A) = \frac{60}{100}, P(B) = \frac{30}{100}, P(C) = \frac{10}{100}$
	$P(E) = P(A) \times P\left(\frac{E}{A}\right) + P(B) \times P\left(\frac{E}{B}\right) + P(C) \times P\left(\frac{E}{C}\right)$
1(B)	$= \frac{60}{100} \times \frac{80}{100} + \frac{30}{100} \times \frac{90}{100} + \frac{10}{100} \times \frac{95}{100}$
	$=\frac{845}{1000} \text{ or } \frac{169}{200}$
	$P\left(\frac{C}{E}\right) = \frac{P(C) \times P(\frac{E}{C})}{P(E)}$
	$\frac{10}{100} \times \frac{5}{100}$
1(C)	$= \frac{\frac{10}{100} \times \frac{5}{100}}{\frac{60}{100} \times \frac{20}{100} + \frac{30}{100} \times \frac{10}{100} + \frac{10}{100} \times \frac{5}{100}}$
	50
	$= \frac{\overline{10000}}{\overline{1550}} = \frac{1}{31}$ $P\left(\frac{A \text{ or } B}{E}\right) = 1 - P\left(\frac{C}{E}\right) = 1 - \frac{1}{31} = \frac{30}{31}$
8	$(A)\frac{7}{40}$
9	(D) Assertion (A) is folso but Posson (P) is true
10 (a)	(D) Assertion (A) is false, but Reason (R) is true. Let X denote the random variable which counts the number of boys.
(54)	X = 0,1,2,3
	21V,1,2,3
	$P(\text{Boy}) = P(\text{Girl}) = \frac{1}{2}$
	Required Probability Distribution
Page [14	CONCENTRATE CONCENT OF THE POPULISH SHAPE CONTENTS OF THE PROPERTY CONTENTS OF THE POPULISH OF

	870	1111	I						
	X	0	1,	2	3				
	P(X)	$\left(\frac{1}{2}\right)^3 = \frac{1}{2}$	$3\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^2 = \frac{3}{2}$	$3\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right) = \frac{3}{8}$	$\left(\frac{1}{2}\right)^3 = \frac{1}{2}$				
		(2) 8	(2)(2) 8	(2)(2) 8	(2) 8				
			sere						
(b)	REAL TRACE		OR						
	Possible va	alues of X are	-2,0,2						
	X	-2	0 2						
		1 2	1 1						
	P(X)	$\frac{1}{4}$ $\frac{1}{4}$	$=\frac{1}{2}$ $\frac{1}{4}$						
	35 In		E Secondo Masserro						
	$Mean = \sum_{n} x_n$	$XP(X)=-2\left(\frac{1}{4}\right)$	$+0\left(\frac{1}{2}\right)+2\left(\frac{1}{4}\right)=$	= 0					
11	- SF	(4	Total (100%)						
		-							
	Misconception (40%) Proficient (60%)								
			1	(No Mi	sconception)				
	Answer		not ver as	Answer	Do not				
	Bijoy (80%)		(20%)	Bijoy (10%)	answer as				
			***************************************		Bijoy (90%)				
	The second second	dent has a mis	A2 C.M.						
		answered Bijo	misconception						
	The second second	100m2							
		$\frac{40}{00}$, $P(E_2) = \frac{6}{10}$							
	$P(A E_1)=$	$\frac{80}{100}, P(A E_2)$	$=\frac{10}{100}$						
	$P(\overline{A} E_1)=$	$\frac{20}{100}$, $P(\bar{A} E_2)$	$=\frac{90}{100}$						
	$(i)P(A E_2$	$=\frac{10}{100} \text{ or } \frac{1}{10}$							
	(ii)P(A) =	$P(E_1)P(A E$	$(1) + P(E_2)P(A A)$	E_2)					
	COOK VO 3634 US	$\frac{40}{100} \times \frac{80}{100} + \frac{6}{100}$		cust00					
	-		00 100						
	=	$\frac{38}{100}$ or $\frac{19}{50}$							
L		mater (MM)		<u> </u>					

	$(iii)(a)P(E_1 A) = \frac{P(E_1)P(A E_1)}{P(A)}$
	$=\frac{\frac{40}{100} \times \frac{80}{100}}{\frac{38}{100}} = \frac{16}{19}$
	$(iii)(b)P(E_2 \mid A) = \frac{P(E_2)P(A \mid E_2)}{P(A)}$
	$=\frac{\frac{60}{100} \times \frac{10}{100}}{\frac{38}{100}} = \frac{3}{19}$
12 (a)	Let A: The die shows a number greater than 3
_ (%)	and B: There is at least one tail
	$P(B \cap A) = P(T4, T5, T6) = \frac{1}{12} = \frac{1}{4}$
	$P(B \cap A) = P(T4, T5, T6) = \frac{3}{12} = \frac{1}{4}$ $P(B) = P(HT, T1, T2, T3, T4, T5, T6) = \frac{1}{4} + \frac{6}{12} = \frac{3}{4}$
	$P(A B) = \frac{P(B \cap A)}{P(B)} = \frac{1/4}{3/4} = \frac{1}{3}$
	$(i)E(X) = \sum X.P(X)$
(b)	$=1\left(\frac{11}{30}\right)+2\left(\frac{1}{15}\right)+3\left(\frac{1}{10}\right)+2\lambda\left(\frac{3}{10}\right)+3\lambda\left(\frac{1}{15}\right)+4\lambda\left(\frac{1}{10}\right)$
	Given $\sum X.P(X) = 3.2$
	$\therefore 24 + 36\lambda = 96$
	$\Rightarrow \lambda = 2$
	(ii)P(X>1)=1-P(X=1)
	$=1-\frac{11}{30}=\frac{19}{30}$
13 (a)	$(i)p + \frac{p}{3} + \frac{p}{6} + \frac{p}{12} = 1$
	$\Rightarrow p = \frac{1}{10}$
	$(ii)P(X \ge 1)=1-P(X=1)$
	$(ii)P(X \ge 1)=1-P(X=1)$ $=1-\frac{p}{3}=1-\frac{12}{19}=\frac{7}{19}$
Daga [16	Conversal # @/2025/Titu Shamas

Page- [156]

$$(iii)E(X) = \sum X.P(X)$$

$$= 0(p) + 1\left(\frac{p}{3}\right) + 2\left(\frac{p}{6}\right) + 3\left(\frac{p}{12}\right)$$

$$= \frac{11}{12}p = \frac{11}{12} \times \frac{12}{19} = \frac{11}{19}$$

Let T: Person uses public transport

B: Person uses a bicycle

Given
$$P(T) = \frac{50}{100}$$
, $P(B) = \frac{35}{100}$, $P(T \cap B) = \frac{20}{100}$
(i) $P(\text{only } T) = P(T) - P(T \cap B)$

$$= \frac{50}{100} - \frac{20}{100} = \frac{30}{100}$$

$$(ii)P(B|T) = \frac{P(T \cap B)}{P(T)}$$

$$\frac{20}{100} \quad 2$$

 $=\frac{\frac{20}{100}}{\frac{50}{100}} = \frac{2}{5}$

$$(iii)P(T'\cap B')=1-P(T\cup B)$$

$$=1-\left[P(T)+P(B)-P(T\cap B)\right]$$

$$=1-\left[\frac{50}{100}+\frac{35}{100}-\frac{20}{100}\right]$$

$$=1-\frac{65}{100}=\frac{35}{100}$$

14 **(D) 0.7**

15

(b)

(a) Let A be the event of buying colouring book and

B be the event of buying coloured box.

$$P(A) = 0.7$$
, $P(B) = 0.2$, $P(A/B) = 0.3$

(i)
$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} \Rightarrow 0.3 = \frac{P(A \cap B)}{0.2}$$

$$\Rightarrow$$
 P(A \cap B) = 0.06 or $\frac{3}{50}$

(ii)
$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$$

= $\frac{0.06}{0.7} = \frac{3}{35}$ or 0.086

OR

(b) Let X be random variable for number of oranges.

$$X = 0, 1, 2, 3$$

	Let A be the e $P(A) = \frac{4}{10} = \frac{2}{5}$		NO SECURIO DE MILITARIO DO	f.						
	(i)									
	X	0	1	2	3					
	P(X)	27	54	36	8					
		125	125	125	125					
	(ii) $ E(X) = \sum p_i x_i = 0 \times \frac{27}{125} + 1 \times \frac{54}{125} + 2 \times \frac{36}{125} + 3 \times \frac{8}{125} $ $= \frac{150}{125} \text{ or } \frac{6}{5} $									
16	Let A: Event that chosen seed germinates.									
	B: Event that Brinjal seed is chosen.									
	C - ACCESS (MCM-240-240-240-240-240-240-240-240-240-240	at Cabbage s at Radish se	seed is chosen	Ŀ						
	30	30	$P(R)=\frac{8}{30};$							
	$P\left(\frac{A}{B}\right) = \frac{25}{100}$; $P\left(\frac{A}{c}\right) = \frac{3}{10}$	$\frac{5}{10}$; $P\left(\frac{A}{R}\right) = \frac{1}{10}$	100						
	(i) $P(A) = P(I)$	$P\left(\frac{A}{B}\right) + P$	$(C).P\left(\frac{A}{C}\right) + \frac{1}{C}$	$P(R).P\left(\frac{A}{R}\right)$						
	$= \frac{10}{30} \times \frac{25}{100} + \frac{12}{30} \times \frac{35}{100} + \frac{8}{30} \times \frac{40}{100}$									
	$=\frac{950}{3000}$	or 33								
	(ii) (a) $P\left(\frac{c}{A}\right) =$	(a) $P\left(\frac{C}{A}\right) = \frac{P(C).P\left(\frac{A}{C}\right)}{P(B).P\left(\frac{A}{B}\right) + P(C).P\left(\frac{A}{C}\right) + P(R).P\left(\frac{A}{B}\right)}$								
$=\frac{\frac{12}{30} \times \frac{35}{100}}{\frac{990}{3000}}$										
	$=\frac{42}{99}$									
17	(C) $\frac{61}{125}$	33								
18	(i) P(correct deci	sion in both	committees	s) = (1 - 0.03)	(1-0.01) = 0.9603					
(i) P(correct decision in both committees) =(1-0.03). (1-0.01) = 0.9603										
	(ii) P(correct decision in one committee) = $0.03 \cdot (1-0.01) + (1-0.03) \cdot 0.01$ = 0.0394									
19	(i) P(defective	smartphone	$e) = 0.25 \times 0.$	$05 + 0.35 \times$	$0.04 + 0.40 \times 0.02$					
		= 0.0	345							
	(ii) P(B/ Defective) = $\frac{0.35 \times 0.04}{0.25 \times 0.05 + 0.35 \times 0.04 + 0.40 \times 0.02}$									
		$-\frac{140}{345}$ or $\frac{28}{69}$								

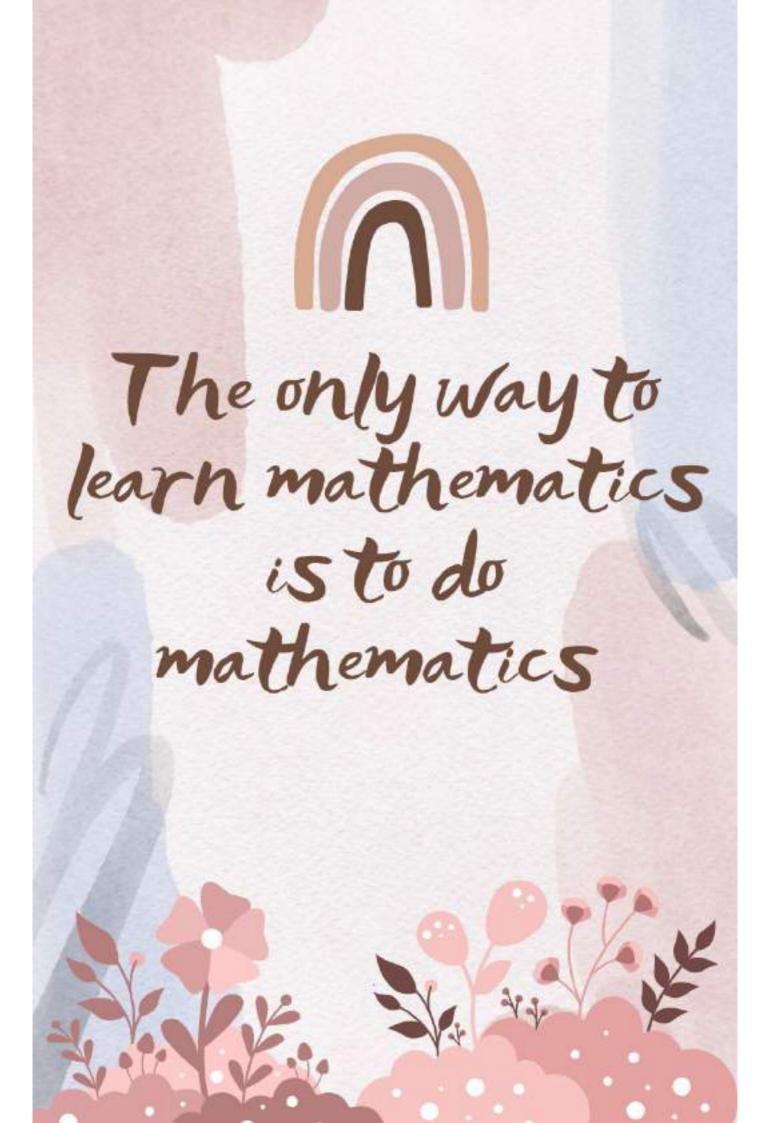
20	$(B)\frac{43}{50}$								
21	$P(H) = \frac{3}{4}, P(T) = \frac{1}{4}$								
	X 0 1								
		$\frac{9}{64}$ $\frac{1}{64}$							
	$P(X) = \frac{27}{64} = \frac{27}{64}$								
	XP(X) 0 $\frac{27}{64}$	18 3 64 64							
		64 64							
	$Mean = \frac{3}{4}$								
22	(B) 0.316	4			5				
23	P(white ball transferred) = $\frac{4}{9}$, Probability(black ball transferred) = $\frac{5}{9}$								
	NEC SERVICE SERVICES								
	P(white ball drawn from bag II) = $\frac{4}{9} \cdot \frac{7}{14} + \frac{5}{9} \cdot \frac{6}{14}$								
	$=\frac{29}{63}$								
0.4	-	63							
24	(D) $\frac{1}{5}$								
25	(B) $\frac{3}{3}$								
	(B) $\frac{c}{26}$								
26	(a) Probability distribution table is:								
	X	0	1	2	3				
	P(X)	2	$\frac{3}{10}$	4	1				
		10	10	10	10				
27	Mean = E(X) = $\sum p_i x_i = 0 \cdot \frac{2}{10} + 1 \cdot \frac{3}{10} + 2 \cdot \frac{4}{10} + 3 \cdot \frac{1}{10} = \frac{14}{10} = \frac{7}{5}$ (or 1.4) OR (b) A = A randomly chosen person is a woman B = A randomly chosen person works outside village. $P(A) = \frac{4000}{8000} = \frac{1}{2}, P(B) = \frac{3000}{8000} = \frac{3}{8}, P(A \cap B) = \frac{1200}{8000} = \frac{3}{20}$ Required probability = $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{3}{8} - \frac{3}{20} = \frac{29}{40}$ (i) Let A: Person contracted the disease $P(A) = P(A_1) \cdot P(A_1) + P(A_2) \cdot P(A_1 A_2) + P(A_3) \cdot P(A_1 A_3)$ $= \frac{7}{10} \left(\frac{25}{100}\right) + \frac{2}{10} \left(\frac{35}{100}\right) + \frac{1}{10} \left(\frac{50}{100}\right)$ $= \frac{295}{1000} = 0.295 \text{ or } \left(\frac{59}{200}\right)$								

$$P(B) = \frac{26}{60}$$

$$P(G|B) = 0.02$$

$$P(C) = \frac{26}{60}$$

$$P(G|C) = 0.20$$
(i)
$$P(G) = P(A)P(G|A) + P(B)P(G|B) + P(C)P(G|C)$$


$$= \frac{6}{60} \times 0.002 + \frac{26}{60} \times 0.02 + \frac{28}{60} \times 0.2$$

$$= \frac{511}{5000}$$
(ii)
$$1 - P(A|G)$$

$$= 1 - \frac{P(A)P(G|A) + P(B)P(G|B) + P(C)P(G|C)}{\frac{1 \times 0.002}{5000}}$$

$$= 1 - \frac{1}{511}$$

$$= \frac{510}{511}$$

