MATHEMATICS BASIC - Code No. 241 MARKING SCHEME CLASS - X (2025 - 26)

	SECTION - A	
Q. No.	Answer	Marks
1.	Answer – D	1
	As, $2025 = 3^4 \times 5^4$	
	So, the exponent of 3 in the prime factorization of 2025 is 4	
2.	Answer – B	1
	On subtracting first equation from second equation, we get	
	$2025x + 2024y - 2024x - 2025y = -1 - 1 \Rightarrow (x - y) = -2$	
3.	Answer – D	1
	As, $f(x) = k(x+2)(x-5) \Rightarrow f(x) = k(x^2 - 3x - 10), k \neq 0$	
	Since k can be any real number. So, there are Infinitely many such polynomials.	
4.	Answer – C	1
	On simplification, given equations reduce to	
	$(A) x^2 + 2x - 2 = 0 ext{ (Quadratic Equation)}$	
	(B) $2x^2 - 3x - 1 = 0$ (Quadratic Equation)	
	(C) $3x + 1 = 0$ (NOT a Quadratic Equation)	
	(D) $4x^2 + x = 0$ (Quadratic Equation)	
5.	Answer – A	1
	As, $2(x + 10) = (3x + 2) + 2x \Rightarrow x = 6$	
6.	Answer – B	1
0.	Allswei – B	•
	As, $\frac{50(51)}{2} = 25k \implies k = 51$	
	Answer – D	
7.	Distance between the given points = $\sqrt{(\frac{1}{2} - \frac{\sqrt{3}}{2})^2 + (\frac{1}{2} + \frac{\sqrt{3}}{2})^2} = \sqrt{2}$	1
8.	Answer – C	1
	We know that, for the coordinates of a mirror image of a point in x-axis,	
	abscissa remains the same and ordinate will be of opposite sign of the ordinate	
	of given point. So, the Mirror image of the point $(-3, 5)$ about x-axis is $(-3, -5)$.	
9.	Answer – B	1
	As, $\triangle ABC \sim \triangle EFD \implies \angle A = \angle E$	
]

10.	Answer – B	1
	As, $\triangle ABC \sim \triangle PQR \Longrightarrow \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{1}{2} \Longrightarrow PQ = 6 \text{ cm}, QR = 8 \text{ cm}$	
	PQ QR PR 2 Perimeter of the triangle PQR (in cm) = $6 + 8 + 10 = 24$	
	, ,	
	Question given for Visually impaired candidates	1
	Answer – B	
	The solution is same as above.	
11.	Answer – A	1
	From the figure, AE = $24 - r$ = AF. So, BF = $1 + r$ = $7 - r \Rightarrow r$ = 3 cm	•
	1 Tom the figure, AL = 24 - 1 = At : 30, Bt = 1 + 1 = 7 - 1 = 3 cm	
	Question given for Visually Impaired candidates	_
	Answer – B	1
	As, PQ = PR = 24 cm	
	So, Area of Quadrilateral PQOR (in cm ²) = $2 \times \frac{1}{2} \times 24 \times 10 = 240$	
12.	Answer – B	1
12.	As, $\cot^2 \mathbf{x} - \csc^2 \mathbf{x} = -1$, so it is NOT equal to Unity	•
13.	Answer – C	1
	As, Median class is 10-15. So, its upper limit is 15.	
14.	Answer – C	1
	Since, 3 Median = Mode + 2 Mean. So, a = 3 & b = 2.	
	Thus, $(2\mathbf{b} + 3\mathbf{a}) = 4 + 9 = 13$	
15.	Answer – B	1
	Radius (in cm) = $\sqrt{13^2 - 12^2} = 5$	
16.	Answer – A	1
	As, ∠PAO= 90°. So, ∠APO = 115° − 90° = 25°	
	Question given for Visually Impaired candidates	1
	Answer – A	
	As, the chord is at a distance of 18 cm (more than the radius). So, the chord	
	will be at a distance of 5 cm on the opposite side of the centre. Thus, length	
	of the chord CD will be $2\sqrt{13^2 - 5^2} = 24 cm$	
17.	Answer – C	1
	As, $r_1 : r_2 = 3 : 4$. So, the ratio of their areas = $r_1^2 : r_2^2 = 9 : 16$	
18.	Answer – A	1
	Since, the event is most unlikely to happen. Therefore, its probability is 0.0001	
19.	Answer – A	1
	As, Both assertion (A) and reason (R) are true and reason (R) is the correct	
	explanation of assertion (A).	
		200 2 of 11

20.	Answer – D	1
	Since events given in Assertion are not equally likely, so probability of getting	
	two heads is not $\frac{1}{3}$.	
	Thus, Assertion (A) is false but reason (R) is true.	
[This s	Section –B ection comprises of solution of very short answer type questions (VSA) of 2 mark	e oachl
[IIII3 3	ection comprises of solution of very short answer type questions (VSA) of 2 mark	s caciij
21 (A).	It can be observed that,	4
	$2 \times 5 \times 7 \times 11 + 11 \times 13 = 11 \times (70 + 13) = 11 \times 83$ which is the product of two factors other than 1. Therefore, it is a composite number.	1
	OR	
21 (B).	The smallest number which is divisible by any two numbers is their LCM.	1/2
	So, Number which is divisible by both 306 and 657 = LCM (306, 657)	/2
	Since, $306 = 2^1 \times 3^2 \times 17^1$ and $657 = 3^2 \times 73$	1
	LCM (306, 657) = $2^1 \times 3^2 \times 17^1 \times 73 = 22338$	1/2
22.	As, P(3, a) lies on the line L, so $3 + a = 5 \Rightarrow a = 2$	1
	Now, the radius of the circle = $CP = \sqrt{3^2 + 2^2} = \sqrt{13} \ units$	1
	Question given for Visually Impaired candidates	
	Diameter of the circle = Distance between (0,0) and (6,8) = $\sqrt{6^2 + 8^2} = 10$	1½
	Radius of the circle = $\frac{1}{2}$ (Diameter of the circle) = 5 units	1/2
23.	Sum of the zeroes = $2 - 3 = -(a + 1) \Rightarrow a = 0$	1
	Product of the zeroes = $-6 = b \Rightarrow b = -6$	
	Hence, $a = 0 \& b = -6$	1
24.	Discriminant, D = $16 + 12\sqrt{2} > 0$	1
	As, Discriminant is positive. So, Roots are real and distinct.	1
25 (A).	$2\sin 30^{\circ} \tan 60^{\circ} - 3\cos^2 60^{\circ} \sec^2 30^{\circ} = 2\left(\frac{1}{2}\right)\left(\sqrt{3}\right) - 3\left(\frac{1}{2}\right)^2 \left(\frac{2}{\sqrt{3}}\right)^2$	11/2
	$=\sqrt{3}-1$	1/2
	OR	
25 (B).	As, $sinx. cosx(tanx + cotx) = sinx. cosx(\frac{sinx}{cosx} + \frac{cosx}{sinx})$.	1/2
	$= \sin x. \cos x \left(\frac{1}{\cos x. \sin x}\right)$	
	= 1 (Constant)	11/2
	Since, the value of sinx. cosx (tanx + cotx) is constant, so its equal 1 for all angles.	

Section -C

[This section comprises of solution short answer type questions (SA) of 3 marks each]

To prove that $(\sqrt{2} - \sqrt{5})$ is an irrational number, we will use the contradiction 26. Method.

Let, if possible, $\sqrt{2} - \sqrt{5} = x$, where x is any rational number (Clearly $x \neq 0$)

so, $\sqrt{2} = x + \sqrt{5} \Longrightarrow 2 = (x + \sqrt{5})^2$

$$\Rightarrow$$
 2 = $x^2 + 5 + 2\sqrt{5}x$

$$\Rightarrow -x^2 - 3 = 2\sqrt{5}x$$

$$\Longrightarrow \frac{-x^2-3}{2x} = \sqrt{5} \dots (1)$$

(Note: $\sqrt{5}$ is an irrational number, as the square root of any prime number is Always an irrational number)

In equation (1), LHS is a rational number while RHS is an irrational number but an irrational number cannot be equal to a rational number. So, our assumption is wrong.

Thus, $(\sqrt{2} - \sqrt{5})$ is an irrational number.

1

1

1

27 (A).

	Area of land	No. of	
	(in hectares)	families	
	1 – 3	20	
	3 – 5	45	f_0
Modal class	5 – 7	80	f_1
	7 – 9	55	f_2
	9 – 11	40	
	11 – 13	12	

2

1

 \therefore Modal class = 5 - 7, I = 5, h = 2

Mode =
$$I + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h = 5 + \left(\frac{80 - 45}{2(80) - 45 - 55}\right)2 = 6.166...$$

Hence, modal agriculture holdings of the village is 6.17 hectare (approx.)

OR

27 (B). Χi $\mathbf{d_i} = \frac{x_i - 30}{h}$ Class interval f_i (Midf_i d_i value) 7 **-** 7 0-20 - 1 10 20-40 0 0 30 р 40-60 10 10 50 1 60-80 9 70 2 18 3 80-100 13 90 39 Total 39 + p60 Assumed mean(A) = 30, Width of the interval (h) = 20Mean = $30 + \frac{60}{39+p} \times 20 = 54 \Longrightarrow 50 = 39 + p \Longrightarrow p = 11$ 28. Tangents drawn to a circle from an external point are equal. So, AP = AS, PB = BQ, CR = CQ, DR = DSOn adding the above equations,

$$(AP + PB) + (CR + RD) = (AS + BQ) + (CQ + DS)$$

 \implies AB + CD = AD + BC

$$\Rightarrow \frac{AB + CD}{AD + BC} = 1$$

1

2

1

Question given for Visually Impaired candidates Parallelogram ABCD circumscribes a circle as shown in figure. Tangents drawn to a circle from an external 11/2 point are equal So, AP = AS, PB = BQ, CR = CQ, DR = DSOn adding the above equations, (AP + PB) + (CR + RD) = (AS + BQ) + (CQ + DS) \implies AB + CD = AD + BC \Rightarrow 2AB = 2BC (Opposite sides of parallelogram are equal) 1 Thus, AB = BCSince, in Parallelogram ABCD a pair of adjacent sides are equal. 1/2 Hence, ABCD is a rhombus. 29 (A). According to the question, $1000x + 200y = 42000000 \Rightarrow 5x + y = 210000$(1) 1 1/2 x + y = 50000....(2) $(1) - (2) \Rightarrow 4x = 160000$ 1 \Rightarrow x = 40000 1/2 Substituting value of x in (2), y = 10000: Number of adults attended the match is 40000 and number of children attended is 10000 OR 29 (B). 2x + y = 63 2 0 2 0 6 2 For x + y = 50 graph 3 0 5 Hence solution is x = 1, y = 41

	Question given for Visually Impaired candidates	
	29(A) Solution and marks distribution is same as above	
	OR	
	29(B) Let unit place digit be x & tens place digit be y	
	∴ original number = 10y+xReversed number = 10x+y	
	Given, $10y + x = 6(x + y)$	
	$\Rightarrow 5x - 4y = 0 \dots (1)$	1
	And $(10y + x) - (10x + y) = 9$ $\Rightarrow -9x + 9y = 9$	1
	$\Rightarrow x - y = -1 \dots (2)$	_
	On solving (1) and (2), we get $x = 4$, $y = 5$	1
	∴ The number is 54	
30.	$LHS = (\sin x - \cos x + 1). (\sec x - \tan x)$	
	$= (\sin x - \cos x + 1) \cdot \left(\frac{1 - \sin x}{\cos x}\right)$	1
	$= (1 + \sin x) \left(\frac{1 - \sin x}{\cos x} \right) - \cos x \left(\frac{1 - \sin x}{\cos x} \right)$	1
	$= \left(\frac{1-\sin^2 x}{\cos x}\right) - (1-\sin x)$	
	$= \frac{\cos^2 x}{\cos^2 x} - 1 + \sin x = \sin x + \cos x - 1 = RHS$	1
	$\cos x$	'
31.	$As, S_n = 5n^2 - n$	
	Now, nth Term is given by $a_n = S_n - S_{n-1}$	1/2
	$a_n = [5n^2 - n] - [5(n-1)^2 - (n-1)]$	1
	$a_n = 5[n^2 - (n-1)^2] - [n - (n-1)]$	
	$a_n = 5[2n-1] - [1]$ $a_n = 10n - 6$	11/2
		• //2
[Th	Section –D is section comprises of solution of long answer type questions (LA) of 5 marks ea	ach]
32.	Given: In ΔABC, a line / drawn parallel to side BC intersects AB and AC at D and E respectively.	1/2
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$	1/2
	Construction: Draw perpendicular from D and E to AC and AB i.e., DM⊥AC and EN⊥AB. Join DC and BE.	1/2

	Proof: $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{\frac{1}{2}(AD)(EN)}{\frac{1}{2}(BD)(EN)} = \frac{AD}{DB} \dots (1)$ $\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{\frac{1}{2}(AE)(DM)}{\frac{1}{2}(EC)(DM)} = \frac{AE}{EC} \dots (2)$	1/2 (for correct figure) 1
	Also, $ar(\Delta BDE) = ar(\Delta CED)$ (3) (Triangles on same base and between same parallel are equal in area) From (1), (2) & (3), we get $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{ar(\Delta ADE)}{ar(\Delta CED)}$ $\Rightarrow \frac{AD}{DB} = \frac{AE}{EC} \text{(Hence proved)}$	1
33 (A)	Let the denominator of the required fraction be x Then, its numerator = $x-3$ So, the original fraction is $\frac{x-3}{x}$ Given,	1
	$\frac{(x-3)+2}{x+2} + \frac{(x-3)}{x} = \frac{29}{20}$ $\frac{(x-1)}{x+2} + \frac{(x-3)}{x} = \frac{29}{20}$ $\frac{(x-1)x + (x-3)(x+2)}{(x+2)x} = \frac{29}{20}$ $\frac{x^2 - x + x^2 - x - 6}{x^2 + 2x} = \frac{29}{20}$ $20(2x^2 - 2x - 6) = 29(x^2 + 2x)$	1
	$11x^{2} - 98x - 120 = 0$ $11x^{2} - 110x + 12x - 120 = 0$ $11x(x - 10) + 12(x - 10) = 0$ $(11x + 12)(x - 10) = 0$ $x = 10 \text{ or } x = -\frac{12}{11} \text{ (not possible as it is not an integer)}$	1½ 1
	$\therefore x = 10$ Hence, the required fraction is $\frac{7}{10}$	1/2
	OR	

33 (B)	Let the original speed of the train be x km/hr	
	Distance travelled be 300km	1/2
	∴ Original time (t _o) = $\frac{300}{x}$ hr	/2
	New speed of the train = (x+5) km/hr	
	$\therefore \text{ New time } (t_n) = \frac{300}{x+5} \text{ hr}$	1/2
	Given,	, -
	$t_0 - t_n = 2$	
	$\frac{300}{x} - \frac{300}{x+5} = 2$	1
	$ \begin{array}{c c} x & x+5 \\ 300(x+5) - 300(x) \end{array} $	
	$\frac{300(x+5) - 300(x)}{x(x+5)} = 2$	
	$\frac{1500}{x^2 + 5x} = 2$	
	$x^2 + 5x^{-2}$	11/2
	$x^2 + 5x - 750 = 0$	1 /2
	$x^2 + 30x - 25x - 750 = 0$	
	x(x+30) - 25(x+30) = 0	
	(x - 25)(x + 30) = 0	1
	x = 25 or $x = -30$ (not possible as speed cannot be negative)	1/2
	$\therefore x = 25$	
	Hence, the original speed of the train is 25km/hr	
34 (A)		
	Let BA be the Chimney and CD be the tower.	
	Chimney	
	Tower	
	30° D	1 (for
		correct
	60° 40m	figure)
	B 300 C 40m	
	In $\triangle CBD$, $tan30^{\circ} = \frac{40}{BC} \Longrightarrow BC = 40\sqrt{3} m$	
	BC	
	In $\triangle ABC$, $tan60^{\circ} = \frac{AB}{40\sqrt{3}} \Longrightarrow AB = 120 m$	11/2
	$AE = (120 - 40) \text{ m} = 80 \text{m}, ED = BC = 40\sqrt{3} \text{m}$	
	Now, $AD = \sqrt{AE^2 + ED^2} = \sqrt{6400 + 4800} = 40\sqrt{7} m$	11/2
	Thus, length of wire tied from the top of the chimney to the top of tower is	
	$40\sqrt{7} m$.	1
	OR	

34 (B)	Let EC be the tower and AB be the building.	1
54 (D)	60° B	1 (for correct figure)
	In $\triangle EDA$, $tan45^\circ = \frac{h}{x} \Longrightarrow h = x$	11/2
	In $\triangle EBC$, $tan60^\circ = \frac{EC}{BC} \Longrightarrow h + 50 = \sqrt{3}h \implies h = \frac{50}{\sqrt{3}-1} = 25(\sqrt{3}+1)m$	1/2
	Thus, $h = 68.25 m = x$ (Horizontal distance between the tower and building)	1/2
	Now, height of the tower =68.25 + 50 = 118.25 m	
35.	Volume of toy = Vol _{Hemi-sphere} +Vol _{Cone}	
	h = 2cm $r = 2cm$ $H = 4cm$	1 (for correct figure)
	$d = 4cm$ $= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 (2r + h) = 25.12 \text{ cm}^3$	2
	Volume of circumscribing cylinder = $\pi r^2 H = 50.24 \text{ cm}^3$	1
	Now, difference in the volumes of circumscribing cylinder and the toy	.
	= Vol. of cylinder – Vol. of toy	
	$= (50.24 - 25.12) \text{ cm}^3$	
	$= 25.12 \text{ cm}^3$	
	Hence, difference in the volumes of circumscribing cylinder and the toy is 25.12cm ³ .	1

Section -E

[This section comprises solution of 3 case- study based questions of 4 marks each with three sub parts of 1, 1 and 2 marks each respectively]

36. (i) Distance between B and C = $4\sqrt{2}$ units (ii) Mid-point of the line joining the points B and C = $(4,4)$ 1 (iii) (A) As, OA = $\sqrt{41}$ units, OB = $\sqrt{40}$ units, OC = $\sqrt{40}$ units So, society A is the farthest from the office. OR (iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units So, Society C is nearer to society A. 37. (i) Area of sector = $\frac{(Arc \ length \times radius)}{2}$ 1 (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ 1 (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ 1 OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ 1 = $239.56 \ m^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ 1 (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ 1 OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ = $1 - \frac{33}{100}$ 11/2 = $1 - \frac{13}{100}$ = $1 - \frac{13}$		· · · · · · · · · · · · · · · · · · ·	1
(iii) (A) As, OA = $\sqrt{41}$ units, OB = $\sqrt{40}$ units, OC = $\sqrt{40}$ units So, society A is the farthest from the office. OR (iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units So, Society C is nearer to society A. 27. (i) Area of sector = $\frac{(Arc \ length \times radius)}{2}$ (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi \ m^2$ 1. (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ = $239.56 \ m^2$ 1. (iii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ = $1 - \frac{(3+10)}{100}$ = $1 - \frac{1}{100}$	36.	(i) Distance between B and C = $4\sqrt{2}$ units	1
So, society A is the farthest from the office. OR (iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units So, Society C is nearer to society A. 1½ So, Society C is nearer to society A. (i) Area of sector = $\frac{(Arc \log h \times radius)}{2}$ (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ 1 (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ = 239.56 m^2 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ = $1 - \frac{(3+10)}{100}$ = $1 - \frac{13}{100}$		(ii) Mid-point of the line joining the points B and $C = (4, 4)$	1
OR (iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units So, Society C is nearer to society A. (i) Area of sector = $\frac{(\text{Arc length} \times \text{radius})}{2}$ (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ 1 (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ $= 239.56 \text{m}^2$ 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ $= \frac{25}{100} \text{or} \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ $= 1 - \frac{13}{100}$		(iii) (A) As, OA = $\sqrt{41}$ units, OB = $\sqrt{40}$ units, OC = $\sqrt{40}$ units	11/2
(iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units So, Society C is nearer to society A. (i) Area of sector = $\frac{(Arc length \times radius)}{2}$ (ii) Area of sector = $\frac{80}{360}\pi \times 4441 = 98\pi m^2$ 1 (iii) (A) $\frac{80}{360}\pi \times 4441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ $= 239.56 \text{m}^2$ 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ $= \frac{25}{100} \text{or} \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ $= 1 - \frac{13}{100}$		So, society A is the farthest from the office.	1/2
So, Society C is nearer to society A. (i) Area of sector = $\frac{(\text{Arc length} \times \text{radius})}{2}$ (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ = 239.56 m ² 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ 1½ $= 1 - \frac{13}{100}$		OR	
37. (i) Area of sector = $\frac{(\text{Arc length} \times \text{radius})}{2}$ 1 (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ 1 (iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ 1 $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ 1 $= 239.56 \text{m}^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10 + 8 + 6 + 1}{100}$ 1 (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30 + 3}{100}$ 1+1 OR (iii) (B) P(person is neither universal recipient nor universal donor) 1/2 1/2 1 1/3 1/3 1/3 1/3		(iii) (B) As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units	11/2
(ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$ $(iii) (A) \frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered = $\frac{80}{360}\pi \times (784 - 441)$ $= 239.56 \text{m}^2$ 1 (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ $= \frac{25}{100} \text{or} \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ 1½		So, Society C is nearer to society A.	1/2
(iii) (A) $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered $= \frac{80}{360}\pi \times (784 - 441)$ $= 239.56 \mathrm{m}^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ (ii) P(selected person to have Rhesus negative blood type) $= \frac{10 + 8 + 6 + 1}{100}$ $= \frac{25}{100} \mathrm{or} \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) $= \frac{30 + 3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3 + 10)}{100}$ $= 1 - \frac{13}{100}$ $= 1 - \frac{13}{100}$	37.	(i) Area of sector = $\frac{(Arc length \times radius)}{2}$	1
(iii) (A) $\frac{1}{360}\pi \times 441 = \frac{1}{360}\pi \times 28^2$ $\theta = 45^\circ$ OR (iii) (B) Increase in the area of the lawn watered $= \frac{80}{360}\pi \times (784 - 441)$ $= 239.56 \text{ m}^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ (ii) P(selected person to have Rhesus negative blood type) $= \frac{10+8+6+1}{100}$ $= \frac{25}{100} \text{ or } \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) $= \frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ $= 1 - \frac{13}{100}$		(ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi m^2$	1
(iii) (B) Increase in the area of the lawn watered $=\frac{80}{360}\pi \times (784-441)$ $=239.56 \text{ m}^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ 1 (ii) P(selected person to have Rhesus negative blood type) $=\frac{10+8+6+1}{100}$ $=\frac{25}{100} \text{ or } \frac{1}{4}$ 1 (iii) (A) P(person is Rhesus positive but neither A nor B type blood) $=\frac{30+3}{100}$ 1+1 OR (iii) (B) P(person is neither universal recipient nor universal donor) $=1-\frac{(3+10)}{100}$ $=1-\frac{13}{100}$ 1½ $=1-\frac{13}{100}$ 1½			
(iii) (B) Increase in the area of the lawn watered $=\frac{3}{360}\pi \times (784-441)$ $= 239.56 \text{ m}^2$ 1 38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ $= \frac{10+8+6+1}{100}$ $= \frac{25}{100} \text{ or } \frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood)= $\frac{30+3}{100}$ $= \frac{33}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ 1½ $= 1 - \frac{13}{100}$		OR	
38. (i) $x = 100 - (30 - 32 - 24 - 4) = 10$ (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ = $1 - \frac{13}{100}$		(iii) (B) Increase in the area of the lawn watered $=\frac{80}{360}\pi \times (784-441)$	1
(ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ 1 (iii) (A) P(person is Rhesus positive but neither A nor B type blood)= $\frac{30+3}{100}$ 1+1 OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ 1½ = $1 - \frac{13}{100}$ 1½		$= 239.56 \text{ m}^2$	1
(iii) P(selected person to have Rhesus negative blood type) = $\frac{100}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ 1 (iii) (A) P(person is Rhesus positive but neither A nor B type blood) = $\frac{30+3}{100}$ 1+1 = $\frac{33}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) = $1 - \frac{(3+10)}{100}$ 1½ = $1 - \frac{13}{100}$ 1½	38.	(i) $x = 100 - (30 - 32 - 24 - 4) = 10$	1
(iii) (A) P(person is Rhesus positive but neither A nor B type blood)= $\frac{33}{100}$ OR (iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ 1½ 1½		(ii) P(selected person to have Rhesus negative blood type) = $\frac{100}{100}$	1
(iii) (B) P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$		(III) (A) P(person is Rhesus positive but neither A nor B type blood)= $\frac{33}{100}$	1+1
$= 1 - \frac{(3+10)}{100}$ $= 1 - \frac{13}{100}$ $= 1 - \frac{13}{100}$			
$=1-\frac{1}{100}$ $\frac{1}{2}$		$=1-\frac{(3+10)}{}$	11/2
100		$= 1 - \frac{1}{100}$ $= \frac{87}{100}$	1/2