

12 th

Syllabus: Mock Test 01 : Ch – Relations and Function, Inverse Trigonometry, Matrices & Determinants

Time: 90 min Maximum marks :40

INSTRUCTIONS TO THE STUDENTS

- 1. Read each question carefully.
- 2. Mark of each question is mention in front of question .
- 3. Attempt one question in internal choice based question .
- 4. Use of calculators is not allowed.
- 5. No negative marking.

	CECTION A					
SECTION A						
(Questions 1 – 10 carry 1 marks)						
1	The value of expression sec ⁻¹ (2) + sin ⁻¹ $\left(\frac{1}{2}\right)$ + tan ⁻¹ $\left(-\sqrt{3}\right)$ is :					
	(a) $\frac{5\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{-\pi}{3}$					
2	Given that A is a non-singular matrix of order 3, such that $A^2 = 2A$, then value of $ 2A $ is:	1				
	(a) 4 (b) 8 (c) 64 (d) 16					
3	The principal value of $\cos^{-1}\left(\cos\frac{13\pi}{\epsilon}\right)$ is					
	The principal value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is $ (a)\frac{13\pi}{6} \qquad \qquad (b)\frac{\pi}{2} \qquad \qquad (c)\frac{\pi}{3} \qquad \qquad (d)\frac{\pi}{6} $ Let $X = \{x^2 : x \in \mathbb{N} \}$ and the function $f : \mathbb{N} \to X$ is defined by $f(x) = x^2$, $x \in \mathbb{N}$. This function is :					
4	Let $Y = \int y^2 \cdot y \in \mathbb{N}$ and the function $f : \mathbb{N} \to Y$ is defined by $f(y) = y^2 \cdot y \in \mathbb{N}$. This function is:	1				
-	(a)injective only (b)not bijective					
	(c)subjective (d)bijective					
5	The number of onto mapping from the set $A = \{1, 2,, 100\}$ to set $B = \{1,2\}$ is					
	(a) $2^{100} - 2$ (b) 2^{100} (c) $2^{99} - 2$ (d) 2^{99}					
	AN EDUCATIONAL INSTITUTE					
6	Given that A = [aij] is a square matrix of order 3×3 and $ A = -7$ then the value of $\sum_{i=1}^{3} a_{i2} A_{i2}$,					
	where Aij denotes the cofactor of elements aij is :					
	(a) 7 (b) -7 (c) 0 (d) 49					
7	If $\cos^{-1}\alpha + \cos^{-1}\beta + \cos^{-1}\gamma = 3\pi$, then the value of $\alpha + \beta + \gamma$ is :					
	(a) 0 (b)3 (c) -3 (d)6 For any square matrix A , $(A-A^t)^t$ isalways :					
8	For any square matrix A , $(A - A^t)^t$ isalways :					
	(a)An identity matrix (b)A null matrix					
	(c)A skew symmetric matrix (d) A symmetric matrix	1				
9	$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$					
	If A. (adj A) = $\begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then the value of A . adj A is equal to :					
	(a)12 (b) 9 (c)3 (d) 27					
10	Two statements are given, one lablled Assertion (A) and the other labelled Reason(R) Select the					
	correct answer from the options (A), (B), (C) and (D) as given below.					

- (a)Both A and R are true and R is the correct explanation for A.
- (b) Both A and R are true and R is not the correct explanation for A.
- (c) A is true but R is false.
- (d) A is false but R is true

Assertion (A):. Domain of $f(x) = \sin^{-1}x + \cos x$ is [-1,1].

Reason (R): Domain of a function is the set of all possible values for which function will be defined.

SECTION B

(a) Find the value of $\tan \left[\frac{\pi}{4} + \cos^{-1}\left(\frac{4}{5}\right)\right]$

- (b)If $\tan^{-1} y + \tan^{-1} z = \frac{\pi}{4}$, then find the value of y+z+yz.
- Find the values of x, y and z if the matrix $A^T = \begin{bmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{bmatrix}$ satisfy the equation $A^TA = I$. 12
- Show that the function f: R \rightarrow R defined by f(x) = $\frac{x}{x^2+1}$ is neither one nor onto.

SECTION C

(a) Find matrix A if A. $\begin{bmatrix} 1 & -2 & 5 \\ 4 & -3 & 9 \end{bmatrix} = \begin{bmatrix} 14 & -13 & 37 \end{bmatrix}$

- (b) Let A = $\begin{bmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{bmatrix}$, where $0 \le \theta \le 2\pi$ then find the range of Det (A)
- Find the domain of the function $y = \sin^{-1}(x^2-2)$

3

5

2

2

3

SECTION D

(Questions 16 – 17 carry 5 marks)

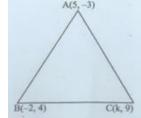
(a) If A ={ $x \in \mathbb{Z}$: $0 \le x \le 15$ }. Show that R= {(a,b): $a,b \in A$, |a-b| is divisible by 5} is an equivalence 16 relation. Find the set of all elements related to 1.

- (b) Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a,b)R(c,d) if ad(b+c)=bc(a+d). Show that R is an equivalence relation.
- Evaluate the product AB, where 17

 $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix},$

Hence solve the system of linear equations:

x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7


SECTION E

(Questions 18 – 19 carry 4 marks)

Sushant is a farmer. He has a triangular field as shown in figure. The vertices of triangular field are A(5,-3), B (-2, 4) and C (k,9) where k < -5.

Based on the above information answer the following question:

- (i)If area of the triangular field is 14 square units, then find the value of k using determinant.
- (ii)Using this value of k, find the value of a+b+c

	$\lceil k + a \rceil$	0	0	
If	0	k + 2b	0	is identity matrix.
	L 0	0	k + 3c	

- An architect is designing a commercial complex and its working on the layout of a rectangular plot of land . When asked about the dimensions. He provides the following instructions :
 - If the length of the plot is decreased by 25m and the breadth is increased by 25 m, the area is increased by 625 m².
 - If the length of the plot is decreased by 20m and the breadth is increased by 10m, the area is decreased by 200m².

Let the original length be x metres and the breadth be y meters.

Based on the above information, answer the following:

- (i) Formulate the system of linear equation in x and y representing the given conditions.
- (ii) Solve the system of equations using matrix method to find the dimensions of the plot.

To get more sample papers , practice papers , study material for Maths (only for CBSE IX-X) join my whatsapp group at link shared below

https://chat.whatsapp.com/HTcfeKqE4wN8075HOehy0t

AN EDUCATIONAL INSTITUTE

TO GET MORE OPEN RESOURCE MATERIAL

