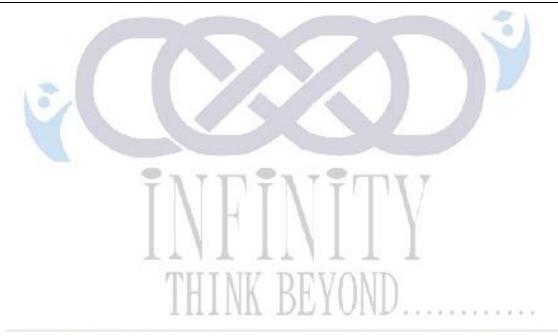

Time: 90 min Maximum marks:40

INSTRUCTIONS TO THE STUDENTS

- 1. Read each question carefully.
- 2. Mark of each question is mention in front of question .
- 3. Attempt one question in internal choice based question .
- 4. Use of calculators is not allowed.
- 5. No negative marking.

	niegative marking.			
	SECTION A			
	(Questions 1 – 10 carry 1 marks)			
1	For what value of k , the function given below is continuous at x=0?	1		
	$\int \frac{\sqrt{4+x}-2}{x} dx \neq 0$			
	$F(x) = \begin{cases} x \\ k \end{cases} x = 0$			
	For what value of k , the function given below is continuous at x=0 ? $F(x) = \begin{cases} \frac{\sqrt{4+x}-2}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ (a) 0 (b) 1/4 (c) 1 (d) 4			
2	The interval in which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is :	1		
	(a) $(-1, \infty)$ (b) $(-2,-1)$ (c) $(-\infty, -2)$ (d) $[-1,1]$			
3	$F(x) = x^2 - 6x + 5$ is strictly increasing in interval:	1		
	(a) $(-\infty, 3)$ (b) $(3, \infty)$ (c) $(-\infty, \infty)$ (d) $(-3, \infty)$			
4	The maximum value of $f(x) = 5 + \sin x - 2 $ is:	1		
	(a)6 (b)7 (c) 8 (d) 9			
5	$\left(\begin{array}{c} \frac{\sqrt{3}\cos x + \sin x}{\pi} & x \neq \frac{-\pi}{2} \end{array}\right)$	1		
	The value of k, for which $f(x) = \begin{cases} x + \frac{\pi}{3} \\ x = \frac{\pi}{3} \end{cases}$, $x = \frac{\pi}{3}$ is continuous at $x = \frac{\pi}{3}$ is:			
	$k x = \frac{-\pi}{3}$			
	The value of k , for which f(x) = $\begin{cases} \frac{\sqrt{3}\cos x + \sin x}{x + \frac{\pi}{3}} & x \neq \frac{-\pi}{3} \\ k & , x = \frac{-\pi}{3} \end{cases}, x = \frac{-\pi}{3} \text{ is continuous at } x = \frac{-\pi}{3} \text{ is :} \\ k & , x = \frac{\pi}{3} \end{cases}$ (a) 1 (b) -1 (c) 2 (d) -2 If Y = $\tan^{-1}\left(\frac{1-\cos 2x}{\sin 2x}\right)$, then $\frac{dy}{dx}$ is $\left[x \in \left(0, \frac{\pi}{4}\right)\right]$ (a) 1 (b) -1 (c) 2 (d) $\frac{1}{2}$			
6	If Y = $\tan^{-1}\left(\frac{1-\cos 2x}{\cos x}\right)$, then $\frac{dy}{dx}$ is $\left[x \in \left(0, \frac{\pi}{2}\right)\right]$	1		
	$\begin{cases} \sin 2x \end{pmatrix} \qquad dx \qquad \begin{bmatrix} 4/\end{bmatrix} \qquad (d)^{1}$			
_		1		
7	The function $f(x) = [x]$, where $[x]$ denotes the greatest integer less than or equal to x is continuous at	1		
	(a)x= 1 (b) x= 1.5 (c) x= -2 (d) x= 4			
8	If the sum of two numbers is 3, then the maximum value of the product of the first and the	1		
	square of second is			
	\cdot			
9	(a) 1 (b) 4 (c) 3 (d) 0 The value of x for which the polynomial 2x ³ -9x ² +12x+4 is a decreasing function of x is?	1		
	(a)-1,< $x < 1$ (b) 0 < $x < 2$ (c) $x > 3$ (d) 1< $x < 2$			
10	Two statements are given, one labeled Assertion (A) and the other labelled Reason(R) Select the	1		
	correct answer from the options (A), (B), (C) and (D) as given below .			
	(a)Both A and R are true and R is the correct explanation for A.			
	(b) Both A and R are true and R is not the correct explanation for A.			
	(c) A is true but R is false.			
	(d) A is false but R is true			


	Accortion (A): If the cide of a course is increasing at the rate of 0.2 cm /sec, then rate of increase of	
	Assertion (A): If the side of a square is incresing at the rate of 0.2 cm /sec, then rate of increase of is perimeter is 0.08 cm / sec.	
	Reason (R): perimeter of a square = 4 (side)	
	SECTION B	
	(Questions 11 – 13 carry 2 marks)	
11	If $x^y = y^x$, then find $\frac{dy}{dx}$.	2
12	A spherical ice – ball melts uniformly . When its radius is 10cm , determine the rate of changes of	2
	its volume with respect to the radius .	
13	(a) If $\tan^{-1}[x^3 + y^3] = a^{2025}$, then find $\frac{dy}{dx}$	2
	OR	
	(b)If y = 5cosx – 3sinx, prove that $\frac{d^2y}{dx^2}$ +y =0	
	SECTION C	
	(Questions 14 – 15 carry 3 marks)	
14	Find the maximum value of $\frac{\sin x \cos x}{\sin x + \cos x}$ in the interval $[0, \frac{\pi}{2}]$	3
15		3
13	If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$	3
	SECTION D	1
	(Questions 16 – 17 carry 5 marks)	
16		5
	If $(x-a)^2 + (y-b)^2 = c^2$, for some c> 0, prove that $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{d^2y}$ is the constant independent of a and b.	
17	Find the interval in which the given function is increasing and decreasing	5
	$F(y) = \frac{4\sin x - 2x - x\cos x}{1 + \cos x}$	
	OR	
	Show that the semi – vertical angle of the cone of the maximum volume and of given slant height	
	is $\tan^{-1}\sqrt{2}$.	
	SECTION E	
	(Questions 18 – 19 carry 4 marks)	
18	When a rectangular sheet of iron heated, its length decrease at the rate of 6cm/s and width	4
	increase at the rate of 5cm/s . Let x and y are length	
	and width of its rectangular sheet respectively at any time 't'.	
	time 't'.	
	Based on the above information answer the following	
	questions:	
	(i)What are the values of $\frac{dx}{dt}$ and $\frac{dy}{dt}$?	
	(ii)What is the rate of changes of perimeter of the sheet?	
	(iii)(a)Find the rate of changes of the length of diagonal of the sheet when $x=3$ and $y=4$ cm . OR	
	(b) Find the rate of changes of the ratio of length and width of the sheet when x= 3cm and	
	y= 4.	L
19	The front gate of a building is in the shape of a trapezium as shown below. Its three sides other	4
	than base are 10 m each. The height of the gate is h metres.	
	On the basis of this information and figure given below answer the following	
	questions:	

- (i)Let the area of the gate be A. Write the area of the gate as a function of x.
- (ii)Find the critical points of the function
- (iii)(a)Use first derivates test to find the maximum area of the gate of the building in m².

Or

(b)Use second derivative test to find the maximum area of the gate of the building in m².

To get more sample papers, practice papers, study material for Maths (only for CBSE XI-XII) join my whatsapp group at link shared below

https://chat.whatsapp.com/E72LRTSsNjb6LPEGW2fVLt

TO GET MORE OPEN RESOURCE MATERIAL

