SECOND TERM EXAMINATION—2025-26

CLASS-XII SUBJECT-MATHEMATICS

Time: 3 Hrs.

M.M.: 80

General Instructions:

- This question paper contains five sections A, B, C, D and E. Each part is compulsory. However, there are internal choices in some questions.
- Section A has 18 MCQs and 2 Assertion-Reasoning based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer-type questions of 2 mark each.
- 4. Section C has 6 Short Answer-type questions of 3 mark each.
- 5. Section D has 4 Long Answer-type questions of 5 mark each.
- 6. Section E has 3 source based/case based questions of 4 mark each with subparts.

SECTION A (1 × 20)

4-4 = CORN

- 1. The function $f: R \to R$ defined by $f(x) = 4 + 3 \cos x$ is
 - a) Bijective

b) One-one but not onto

c) Onto but not one-on

- d) Neither one-one nor onto
- 2. $\tan^{-1} \sqrt{3} \sec^{-1} (-2)$ is equal to
 - a) π

b) $-\frac{\pi}{3}$

c) π/3

d) $\frac{2\pi}{3}$

- The value of the expression $\sin\{\cot^{-1}[\cos(\tan^{-1}(1))]\}$
 - a) $\sqrt{\frac{2}{3}}$

- 1
- 4. If $A = \begin{bmatrix} 0 & 1 & c \\ -1 & a & -b \\ 2 & 3 & 0 \end{bmatrix}$ is a skew symmetric matrix then the value of a+b+c is

b)

d 3

- 4 d)
- If for a square matrix A, A . (adj A) = $\begin{bmatrix} 2025 & 0 & 0 \\ 0 & 2025 & 0 \\ 0 & 0 & 2025 \end{bmatrix}$, then the value of |A| + |adj A| is equal to
 - a)

2025 + 1b)

c) $(2025)^2 + 45$

- $2025 + (2025)^2$ d)
- 6. If $y^2(2-x) = x^3$, then $\frac{dy}{dx}$ at (1, 1) is equal to
 - 2)

c) $\frac{2}{2}$

- d) $-\frac{3}{2}$
- 7. If $\frac{d}{dr}[f(x)] = ax + b$ and f(0) = 0, then f(x) is equal to
 - a) a + b

b) $\frac{ax^2}{2} + bx$

 $\frac{ax^2}{2} + bx + C$

8.	The degree of the differential equation	[1	+	$\left(\frac{dy}{dx}\right)$	$\left \frac{3}{x} \right =$	$\frac{d^2y}{dx^2}$	is
----	---	----	---	------------------------------	--------------------------------	---------------------	----

a) 4

b) $\frac{3}{2}$

c) 2

d) not defined

9. The general solution of the differential equation x dy + y dx = 0

a) xy = c

 $b) \quad x + y = c$

c) $x^2 + y^2 = c^2$

 $d) \quad \log y = \log x + c$

10. If \vec{a} is any non zero vector, the value of $(\vec{a} \cdot \hat{i}) \hat{i} + (\vec{a} \cdot \hat{j}) \hat{j} + (\vec{a} \cdot \hat{k}) \hat{k}$ is equal to

a) a

- b) 2 a
- c) 3 a

d) 4 a

11. ABCD is a rhombus whose diagonals intersect at E. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$ equals to

a) 0

b) \overrightarrow{AD}

c) 2 BD

d) 2 AD

12. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of both X-axis and Z-axis, then the angle which it makes with the positive direction of Y-axis is

a) 0

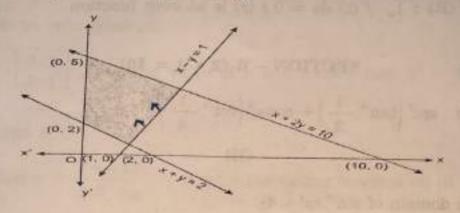
b) $\frac{\pi}{4}$

 $e) \frac{\pi}{2}$

d) n

13.	If a a	and b are two vectors such that	a = :	$ \vec{b} = 2 \text{ and } \vec{a} \cdot \vec{b} = \sqrt{3}$						
	then the angle between $2\overrightarrow{a}$ and $-\overrightarrow{b}$ is									
	a)	π 6	b)	$\frac{\pi}{3}$						
	c)	$\frac{5\pi}{6}$	d) =	11π 6						
14.	The angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$ is									
	a)	0°	bit	30°						
	c)	45°	d)	90°						
15.	The	The coordinates of the foot of the perpendicular drawn from the point								
	(0, 1	, 2) on the X-axis are given by								
	a)	(1, 0, 0)	(a)	(2, 0, 0)						
	c)	(√5, 0, 0)	, q)	(0, 0, 0)						
16.	The reflection of the point (α, β, γ) in the XY plane is									
	al	(α, β, 0)	b)	(0, 0, γ)						
	c)	$(-\alpha, -\beta, \gamma)$	d)	(α, β, -γ)						
17.	The	number of corner points of	the f	feasible region determined b						
	constraints $x \ge 0$, $y \ge 0$, $x + y \ge 4$ is									
	a)	0	b)	1						
	Q)	2	d)	3						

18. The feasible region corresponding to the linear constraints of a Linear programming Problem is given below



Which of the following is not a constraint to the given linear programming problem?

a)
$$x + y \ge 2$$

b)
$$x + 2y \le 10$$

c)
$$x - y \ge 1$$

d)
$$x - y \le 1$$

In the following questions, a statement of Assertion(A) is followed by a statement of Reason(R), choose the correct answer out of the following choices.

- A) Both A and R are true and R is the correct explanation of A.
- B) Both A and R are true and R is not the correct explanation of A
- (c) A is true but R is false.
- D) A is false but R is true.
- 19. Assertions (A): For any square matrix A, A and adj (A) always commute.

Reason (R): Let A be a 3 × 3 non singular matrix such that $A^* = 2A$, then $|A| = \pm 2\sqrt{2}$.

20. Assertion (A):
$$\int_{-2}^{2} (x^7 + \sin^3 x) dx = 0$$

Reason (R): $\int_{a}^{b} f(x) dx = 0 f(x)$ is an even function.

SECTION - B
$$(2 \times 4 = 10)$$

Evaluate:
$$\sec^2\left(\tan^{-1}\frac{1}{2}\right) + \csc^2\left(\cot^{-1}\frac{1}{3}\right)$$

OR

Find the domain of $\sin^{-1}(x^2 - 4)$.

- 22. Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 2.
- 23. Evaluate : $\int \frac{\sin^8 x \cos^8 x}{1 2\sin^2 x \cos^2 x} dx$

OR

Evaluate:
$$\int \frac{1}{(1+x)^{1/2} + (1+x)^{1/0}} dx$$

- If vectors $\overrightarrow{a} = 2 \widehat{1} + 2 \widehat{j} + 3 \widehat{k}$, $\overrightarrow{b} = -\widehat{1} + 2 \widehat{j} + \widehat{k}$ and $c = 3 \widehat{1} + \widehat{j}$ are such that $\overrightarrow{b} + \overrightarrow{\mu} \overrightarrow{c}$ is perpendicular to \overrightarrow{a} , then find the value of μ .
- 25. Find the coordinates of the point where the line through (-1, 1, -8) and (5, -2, 10) crosses the ZX plane.

SECTION - C
$$(3 \times 6 = 18)$$

26. A relation R is defined on $N \times N$ (where N is the set of natural numbers) as:
(a, b) R (c, d) \Leftrightarrow a - c = b - d. Show that R is an equivalence relation.

Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{2x}{1+x^2}$ is neither one-one nor onto. Further, find set A so that the given function $f: \mathbb{R} \to A$ becomes an onto function.

If $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the value of a and b such that $A^2 + Aa + bl = 0$.

Hence find A-1.

- Prove that $y = \frac{4 \sin \theta}{2 + \cos \theta} \theta$ is an increasing function on $\left[0, \frac{\pi}{2}\right]$
- Solve the following differential equation: $\left[y x \cos\left(\frac{y}{x}\right)\right] \frac{dx}{dx} + \left[y \cos\left(\frac{y}{x}\right) 2x \sin\left(\frac{y}{x}\right)\right] \frac{dy}{dx} = 0.$

OR

Find the general solution of the differential equation :

$$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$

- An ant is moving along the vector $\overrightarrow{a} = \widehat{1} 2\widehat{j} + 3\widehat{k}$. Few sugar crystals are kept along the vector $\overrightarrow{b} = 3\widehat{1} 2\widehat{j} + \widehat{k}$ which is inclined at an angle 0 with the vector \overrightarrow{a} . Then find the angle 0. Also find the scalar projection of \overrightarrow{a} on \overrightarrow{b} .
- 31. Solve the following linear programming problem graphically:

Minimise: Z = x + 2y, subject to constraints: $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x, y \ge 0$.

SECTION - D
$$(5 \times 4 = 20)$$

32/

Find the value of a and b, if the function f defined by

$$f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$$
 is differentiable at $x = 1$.

OR

If x cos (a + y) = cosy, then prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$. Hence, show

that
$$\sin a \frac{d^3y}{dx^3} + \sin 2 (a + y) \frac{dy}{dx} = 0$$

Show that the right circular cone of least curved surface area and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

OR

A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12m, find the dimensions of the rectangle that will produce the largest area of the window.

Evaluate : $\int_{-1}^{32} |x \sin \pi x| dx$

Make a rough sketch of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ and find the area of the region, using method of integration.

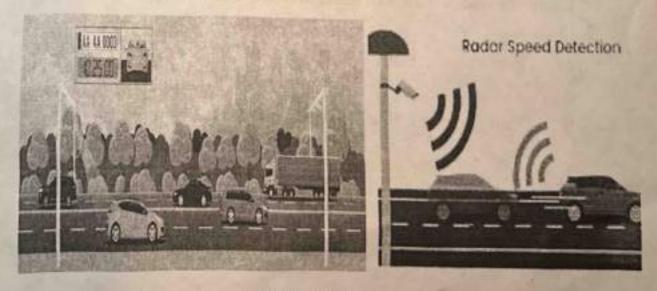
SECTION – \cancel{E} (4 × 3 = 12)

36. Utkarsh buys 5 pens, 3 bags and 1 instrument box and pays a sum of Rs.160. From the same shop, Daksh buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of Rs.190. Also, Tejasvi buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of Rs.250.

Based on the above information, answer the following questions:

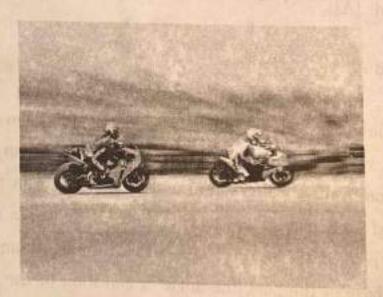
Convert the above situation into a matrix equation of the form AX = B.

The traffic police has installed Over Speed Violation Detection (OSVD) system at various locations in a city. These cameras can capture a speeding vehicle from a distance of 300 m and even function in the dark. A camera is installed on a ploe at the height of 5m. It detects a car travelling away from the pole at the speed of 20 m per second. At any point, x m away from the base of the pole, the angle of elevation of the speed camera from the car C is 0.



Using the above information answer the following questions:

- Express 0 in terms of height of the camera installed on the pole and x. (1)
- Find $\frac{d\theta}{dx}$ (1)
- Find the rate of change of angle of elevation with respect to time at an instant when the car is 50m away from the pole. (2)
- 38. Two motercycles A and B are running at the speed more than the allowed speed on the roads represented by the lines $\overrightarrow{r} = \alpha (\widehat{1} + 2\widehat{1} \widehat{k})$ and $\overrightarrow{r} = (3\widehat{1} + 3\widehat{1}) + \mu (2\widehat{1} + \widehat{1} + \widehat{k})$ respectively.



Using the above information answer the following questions:

- Find the shortest distance between the given lines. (2)
- (b) Find the point at which motorcycles may collide. (2)

-X-X-