BLUEBELLS SCHOOL INTERNATIONAL

Pre-Board-I Examinations 2024-25.

CLASS- XII

16th November, 2024

Duration -3 hrs

SUBJECT-Mathematics

Max. Marks- 80

SYLLABUS -

Full Syllabus as per CBSE (excluding Vectors and 3D)

INSTRUCTIONS-

Part A has 20 questions of 1 mark each

Part B has 5 questions of 2 marks each

Part C has 6 questions of 3 marks each

Part D has 4 questions of 5 marks each

Part E has 3 case studies of 4 marks each

Graph sheet required

Q3

SECTION - A

(c) 3

Q1
If
$$A = \begin{bmatrix} x+3 & 8 \\ 3 & 2 \end{bmatrix}$$
 is non-invertible matrix, then the value of x is

(a) 12
(b) 6
(c) 3
(d) 9

Let $A = \{1, 2, 3, ..., 100\}$.

Let a relation R be defined on A, given by $R = \{(x, y) : xy \text{ is a perfect square}\}$.

Then the equivalence class [2] is

(a) {2, 8, 18, 32, 50}

(b) {2, 8, 18, 32}

(c) {2, 8, 18, 32, 50, 72, 98}

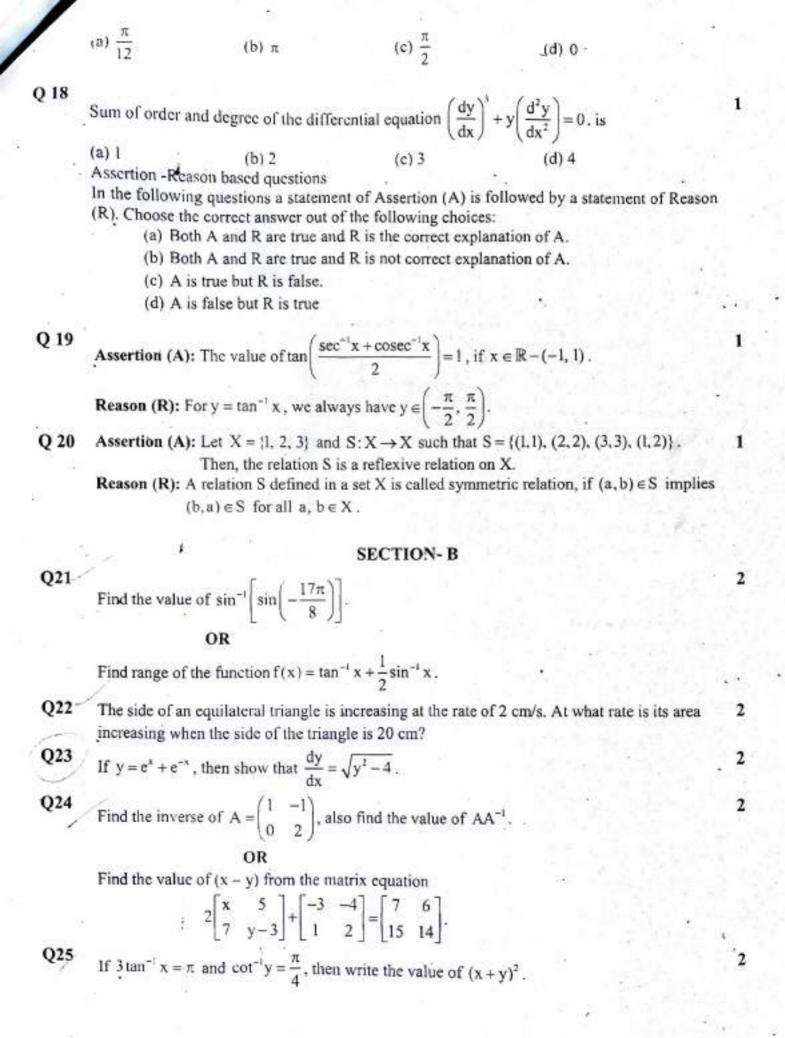
(d) None of these

Let $\sin^{-1}(2x) + \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$. Then the value of 'x' is

(a) $\frac{1}{6}$ (d) 8

If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and A + A' = I, then the value of α is

(b) $\frac{2\pi}{3}$


 $Q 5 \qquad \int e^x \left(\log \sqrt{x} + \frac{1}{2x} \right) dx =$

(a) $e^x \times \log x + C$ (b) $e^x \times \log \sqrt{x} + C$ (c) $e^x \times \frac{1}{2x} + C$ (d) $\frac{e^x}{\log \sqrt{x}} + C$

If \dot{A} is a square matrix of order 3 such that $|A| \neq 0$, then which of the following is not true?

(a) $|adj.A| = |A|^2$ (b) |A| = |A'| (c) $|A|^{-1} = |A^{-1}|$ (d) A is a singular matrix

Q7	If $y = \sin(2\sin^{-1}x)$, then $(1-x^2)y_2$ is equal to					
0	$(a) -xy_1 + 4y$	$(b) -xy_1 - 4y$	(c) $xy_1 - 4y$	(d) $xy_1 + 4y$		
		dur			1	
Q 8	If $y = \tan^{-1}(e^{2x})$,	then $\frac{dy}{dx}$ is equal to				
. 7	(a) $\frac{2e^{2s}}{1+e^{4s}}$	(b) $\frac{1}{1 + e^{4x}}$	(c) $\frac{2}{e^{2x} + e^{-2x}}$	(d) $\frac{1}{e^{2x} - e^{-2x}}$		
Q 9	Q 9 The number of arbitrary constants in the particular solution of a differential equipment second order is (are)					
	(a) 0	(b) 1	(c) 2 ·	(d) 3		
· Q 10	The objective fur	action of a linear progra	amming problem, is		1	
Q 10	(a) a constant (b) a linear function to be optimized					
	(c) an ine		(d) a qua	(d) a quadratic expression		
Q 11	$\int_{1}^{x} \frac{\log x}{x} dx \text{ is equ}$	al to				
	1 0		1	Service Control		
	(a) $\frac{e^2}{2}$	(b) I	(c) $\frac{1}{2}$	(q) −∞ i		
Q 12	$\int x \sec^2(5+x^2) dx$	k equals			1	
# ₇₀ <		(b) $\frac{1}{2} \tan(5 + x^2)$	+C (c) $-\frac{1}{2}\tan(5+x)$	(d)		
	$-\tan(5+x^2)+C$		A Property of			
Q 13		and (0,5). If the max		stem of linear inequalities +by, where a, b > 0 oc		
	() 21	(b) 20 - b	(c) a = b	(d) $3a = b$		
Q 14			$\left(e^{-2\sqrt{x}} \right) dx$		1	
	Integrating factor	for differential equati		=1, is		
	(a) 2√x	(b) e ^{2√x}	(c) e ^{√x}	(d) e ^{-2√k}		
Q 15	If A and B are tw	o independent events	with $P(A) = \frac{1}{3}$ and $P(A) = \frac{1}{3}$	$(B) = \frac{1}{4}, \text{ then } P(B' \mid A) \text{ i}$	s equal .1	
	to			1		
	102	1	3	THE PARTY OF THE P		
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d)		
	4	v 1			ee	
Q 16	The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous at					
	(a) exactly	one point	(b) exactly two points			
		three points		(d) no point		
Q 17	Ē	27. A 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
	The value of $\int_{1}^{3} \frac{\cos x}{1}$	$\frac{s \times -\sin x}{\sin 2x} dx$ is				
2 3		T 5111 4 A				
	'n					

SECTION- C

Q26 Let L be the set of all lines in a plane and R be the relation in L defined as

$$R = \{(L_1, L_2): L_1 \text{ is perpendicular to } L_2\}.$$

Show that R is symmetric but neither reflexive nor transitive.

OR

Prove that the function $f: N \to N$ defined by $f(x) = x^2 + x + 1$ is one-one but not onto:

3

3

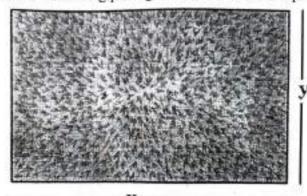
3

5

Q27 Find: $\int \frac{x^3 + 1}{x^3 - x} dx$.

Q32

- Q28 A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn randomly one-by-one without replacement and are found to be both kings. Find the probability of the lost card being a king.
- Find the particular solution of the D.E. : $\frac{dy}{dx} 3y \cot x = \sin 2x$, given that y = 2 when $x = \frac{\pi}{2}$.
- Find the value of $\int_{0}^{1} \tan^{-1} \left(\frac{1-2x}{1+x-x^{2}} \right) dx$
- Q31 An urn contains 5 red, 2 white and 3 black balls. Three balls are drawn, one-by-one, at random without replacement. Find the probability distribution of the number of white balls. Also, find the mean of the number of white balls drawn.


SECTION- D

- If $A = \begin{bmatrix} 1 & 2 & -3 \\ 3 & 2 & -2 \\ 2 & -1 & 1 \end{bmatrix}$, then find A^{-1} and use it to solve the following system of the equations:
 - x + 2y 3z = 6, 3x + 2y 2z = 3, 2x y + z = 2.
- Q33 A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan^{-1}\left(\frac{1}{2}\right)$. Water is poured into it at a constant rate of 5 cubic metres per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.
- Q34 Solve the following linear programming problem graphically. Minimise z = 3x + 2y

Subject to the constraints: $x \ge 0$, $y \ge 0$, $3x + 4y \le 60$, $y \ge 3$, $x \ge 2y$.

- Also, write the maximum value of z.
- Find the area enclosed between by the circle $x^2 + y^2 = 16$ and the lines $\sqrt{3}y = x$, x = 0 in the first quadrant using integration.

CASE STUDY 1: Read the following passage and the answer the questions given below.

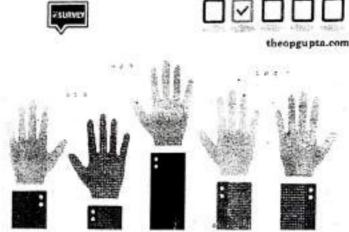
Manjit wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that:

- If its length is decreased by 50 m and breadth is increased by 50 m, then its area will remain same,
- If length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m².
- (i) Assume that the length and breadth of the land be x and y (in metres) respectively. Find the equations in terms of x and y.
- (ii) Using matrices represent the linear equations obtained above in (i).
- (iii) Using matrices, determine the dimensions of the land (in metres). Also write the area of the rectangular plot of land (in square metres).

OR

- (iii) Suppose that, Manjit gave the information about his plot in the following manner: If its length is decreased by 50 m and breadth is increased by 50 m, then its area will remain the same, but if length is decreased by 20 m and breadth is decreased by 10 m, then its area will be decreased by 4800 m². In this situation, what will be dimensions of the plot? Assume that the length and breadth of the land be x and y (in metres) respectively. Use matrices.
- Q37 CASE STUDY II: Read the following passage and answer the questions given below.

 A tank, as shown in the figure below, formed using a combination of a cylinder and a cone, offers better drainage as compared to a flat bottomed tank.


A tap is connected to such a tank whose conical part is full of water. Water is dripping out from a tap at the bottom at the uniform rate of 2 cm³/s.

The semi-vertical angle of the conical tank is 45°.

- (i) Find the volume of water in the tank in terms of its radius r.
- (ii) Find rate of change of radius at an instant when $r = 2\sqrt{2}$ cm.
- (iii) Find the rate at which the wet surface of the conical tank is decreasing at an instant when radius $r = 2\sqrt{2}$ cm.

OR

(iii) Find the rate of change of height 'h' at an instant when slant height is 4 cm.

Utkarsh was doing a survey on a school. Theme of the survey was 'the average number of hours spent on study' by students selected at random. At the end of survey, he prepared the following report related to the data.

Let X denotes the average number of hours spent on study by students. The probability that X can take the values x, has the following form, where k is some constant.

$$P(X = x) = \begin{cases} 0.2, & \text{if } x = 0 \\ kx, & \text{if } x = 1 \text{ or } 2 \\ k(6-x), & \text{if } x = 3 \text{ or } 4 \end{cases}.$$

- (i) What is the value of k?
- (ii) What is the probability that the average study time of students is not more than 1 hour?
- (iii) What is the probability that the average study time to students is at least 3 hours? What is the probability that the average study time of students is exactly 2 hours?

(iii) What is the probability that the average study time of students is at least 1 hour?