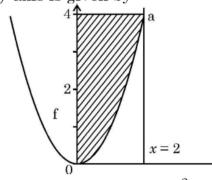
Name	Section	Roll No	

CRPF PUBLIC SCHOOL, ROHINI, DELHI PRE-BOARD - 1 EXAMINATION (2025-26) CLASS XII MATHEMATICS (SET-A)

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:


- **1.** This Question paper contains **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- **4. Section C** has **6 Short Answer (SA)-type questions** of 3 marks each.
- **5. Section D** has **4 Long Answer (LA)-type questions** of 5 marks each.
- **6. Section E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions		
Q1	If $y = \sin^{-1}x$, $-1 \le x \le 0$, then the	range of y is	
	(A) $\left(\frac{-\pi}{2}, 0\right)$	(B) $\left[\frac{-\pi}{2}, 0\right]$	
	(C) $\left[\frac{-\pi}{2}, 0\right)$	(D) $\left(\frac{-\pi}{2}, 0\right]$	
Q2	If $\begin{bmatrix} x & 2 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ x \end{bmatrix} = \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ x \end{bmatrix}$, then value of x is:		
	(A) -1	(B) 0	
	(C) 1	(D) 2	
Q3	If $A = \begin{bmatrix} 1 & 12 & 4y \\ 6x & 5 & 2x \\ 8x & 4 & 6 \end{bmatrix}$ is a symmetric	matrix, then $(2x + y)$ is	
	(A) -8 (C) 6	(B) 0	
	(C) 6	(D) 8	
Q4	If $A = \begin{bmatrix} x & 3 \\ 3 & x \end{bmatrix}$ and $ A^3 = 343$, the	nen x is	
	(A) ±7 (E) (C) ±3 (I	3) ± 4	
	(C) ±3 (I	D) ±5	

	10 500 950 199	
Q5	If $\begin{vmatrix} x+1 & x-1 \\ x-3 & x+2 \end{vmatrix} = \begin{vmatrix} 5 & 5 \\ 3 & 7 \end{vmatrix}$, then the value of x is:	
	(A) 4	(B) 3
	(C) 6	(D) 2
Q6	If A is a square matri	x of order 3 such that $A(adj A) = 7 I$, then
	adj A is equal to :	Was II
	(A) 1	(B) 343
	(C) 7	(D) 49
Q7	$\frac{d}{dx} [\cos (\log x + e^x)] a$	t x = 1 is:
	(A) - sin e	(B) sin e
	(C) $-(1 + e) \sin e$	(D) (1 + e) sin e
Q8	$f(x) = x^x$ has a critical	d point at :
	(A) $x = e$	(B) $x = e^{-1}$ (D) $x = 1$
	(C) $x = 0$	(D) $x = 1$
Q9	$\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx \text{ is e}$	qual to :
	(A) $2(\sin x + x \cos \alpha)$	+ C (B) $2(\sin x - x \cos \alpha) + C$
	(C) $2(\sin x + 2x \cos \alpha)$	$+ C$ (D) $2(\sin x + \sin \alpha) + C$
Q10	$\int \frac{e^x}{\sqrt{4 - e^{2x}}} dx \text{ is equa}$	1 to :
	(A) $\frac{1}{2} \cos^{-1}(e^{x}) + C$	(B) $\frac{1}{2} \sin^{-1}(e^x) + C$
	(C) $\frac{e^x}{2}$ + C	(D) $\sin^{-1}\left(\frac{e^x}{2}\right) + C$
Q11	The value of $\int_{-1}^{1} x dx$	is:
	(A) -2	(B) -1
	(C) 1	(D) 2

The area of the shaded region (figure) represented by the curves $y = x^2$, $0 \le x \le 2$ and y-axis is given by

Q13

The order and degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \, sin\!\left(\frac{dy}{dx}\right) \, are :$$

- (A) order 2, degree 2
- (B) order 2, degree 1
- order 2, degree not defined (D) order 1, degree not defined

Q14

If $\vec{\alpha} = \hat{i} - 4\hat{j} + 9\hat{k}$ and $\vec{\beta} = 2\hat{i} - 8\hat{j} + \lambda\hat{k}$ are two mutually parallel vectors, then λ is equal to:

(A) -18

Q15

If a line makes an angle of 30° with the positive direction of x-axis, 120° with the positive direction of y-axis, then the angle which it makes with the positive direction of z-axis is:

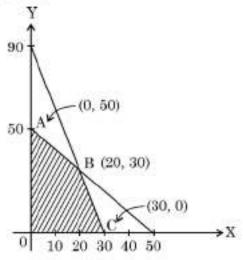
(A) 90°

(B) 120°

(C) 60°

(D)

Q16


In an LPP, corner points of the feasible region determined by the system of linear constraints are (1, 1), (3, 0) and (0, 3). If Z = ax + by, where a, b > 0 is to be minimized, the condition on a and b, so that the minimum of Z occurs at (3, 0) and (1, 1), will be:

(B)
$$a = \frac{b}{2}$$

$$(D)$$
 $a = b$

The maximum value of Z = 4x + y for a L.P.P. whose feasible region is given below is :

(A) 50

(B) 110

(C) 120

(D) 170

Q18

If $P(A) = \frac{1}{7}$, $P(B) = \frac{5}{7}$ and $P(A \cap B) = \frac{4}{7}$, then $P(\overline{A} \mid B)$ is:

(A) $\frac{6}{7}$

(B) $\frac{3}{4}$

(C) $\frac{4}{5}$

(D) $\frac{1}{5}$

Assertion Reasoning Based Questions

Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**.

In the light of the above statements, choose the *most appropriate* answer from the options given below

- (A) Both A and R are correct and R is the correct explanation of A
- (B) Both A and R are correct but R is NOT the correct explanation of A
- (C) A is correct but R is not correct
- (D) A is not correct but R is correct

Q19

Assertion (A): $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is equal to $\frac{\pi}{6}$.

Reason (R): The range of the principal value branch of the function $y = \cos^{-1} x$ is $[0, \pi]$.

Q20

Assertion (A): $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous at x = 0.

Reason (R): When $x \to 0$, $\sin \frac{1}{x}$ is a finite value between -1 and 1.

Q21	Prove that:
	. = 1 ./1-v)
	$\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in [0, 1]$
	OR
	Evaluate:
	$\sec^2\left(\tan^{-1}\frac{1}{2}\right) + \csc^2\left(\cot^{-1}\frac{1}{3}\right)$
Q22	If $\tan^{-1}(x^2 + y^2) = a^2$, then find $\frac{dy}{dx}$.
	OR dv. log v
	If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{\{\log(xe)\}^2}$.
Q23	A ladder 13 m long is leaning against the wall. The bottom of the ladder
	is pulled along the ground away from the wall at the rate of 2 m/s. How
	fast is the height on the wall decreasing when the foot of the ladder is
	12 m away from the wall?
Q24	Find a vector of magnitude 21 units in the direction opposite to that
	of \overrightarrow{AB} where A and B are the points A(2, 1, 3) and B(8, -1, 0) respectively.
Q25	The diagonals of a parallelogram are given by $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and
	$\vec{b} = \hat{i} + 3\hat{j} - \hat{k}$. Find the area of the parallelogram.
	OR
	The scalar product of the vector $\overrightarrow{a} = \hat{i} - \hat{j} + 2\hat{k}$ with a unit vector
	along sum of vectors $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{c} = \lambda \hat{i} - 2\hat{j} - 3\hat{k}$ is
	equal to 1. Find the value of λ .
	SECTION – C (Short Answer (SA)-type questions) 3 Marks Each
Q26	Find the intervals in which the function $f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$ is:
	(a) strictly increasing (b) strictly decreasing.
	OR
	If M and m denote the local maximum and local minimum values of the

00=	T				
Q27	Using integration, find the area of the region bounded between				
	the lines $x = -2$, $x = 2$ and the circle $x^2 + y^2 = 16$.				
Q28	Solve the differential equation $(1 + x^2) \frac{dy}{dx} + 2xy - 4x^2 = 0$ subject				
	to initial condition $y(0) = 0$.				
	OR				
	For the differential equation $\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0$, find the				
	particular solution, given that $y = 0$ when $x = 1$.				
Q29	Find a point P on the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ such that its distance				
	from point $Q(2, 4, -1)$ is 7 units. Also, find the equation of line joining P and Q.				
Q30	Solve the following L.P.P. graphically:				
	Maximise $Z = x + 3y$				
	subject to the constraints :				
	$x + 2y \le 200$				
	$x + y \le 150$				
	y ≤ 75				
	$x, y \ge 0$				
Q31	Four students of class XII are given a problem to solve				
	independently. Their chances of solving the problem respectively				
	are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{3}$ and $\frac{1}{5}$. Find the probability that at most one of them				
	will solve the problem.				
	OR				
	A black and a red die are rolled together. Find the conditional probability				
	of obtaining the sum 8, given that the red die resulted in a number less than 4.				
	SECTION – D (Long Answer (LA)-type questions) 5 Marks Each				
Q32	[3 2 1]				
	If matrix $A = \begin{bmatrix} 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the following				
	1 1 1				
	system of linear equations:				
	3x + 2y + z = 2000				
	4x + y + 3z = 2500				
	x + y + z = 900				
ı	02/0				

Q33 If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$. If $x = a \left(\cos \theta + \log \tan \frac{\theta}{2} \right)$ and $y = \sin \theta$, then find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{4}$. **Q34** Evaluate: Find: OR $\int_{0}^{\infty} \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$ **Q35** Write the nature of the lines $\frac{x-1}{4} = \frac{y-2}{6} = \frac{z-3}{8}$ and

 $\frac{x-2}{2} = \frac{y-4}{3} = \frac{z-5}{4}$. Also, find the shortest distance between them.

Find the foot of the perpendicular drawn from the point (2, 3, -8) to the line $\frac{x-4}{2} = \frac{y}{-6} = \frac{z-1}{3}$. Also, find the perpendicular distance of the given line from the given point.

SECTION - E (Case Study Based Questions) 4 Marks Each

Q36 A school is organizing a debate competition with participants as speakers $S = \{S_1, S_2, S_3, S_4\}$ and these are judged by judges $J = \{J_1, J_2, J_3\}$. Each speaker can be assigned one judge. Let R be a relation from set S to J defined as $R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\}.$ Based on the above, answer the following:

- (i) How many relations can be there from S to J? 1
- (ii) A student identifies a function from S to J as $f = \{(S_1, J_1), (S_2, J_2), \dots, (S_n, J_n), \dots, (S_n, J_n)$ $(S_3, J_2), (S_4, J_3)$ Check if it is bijective. 1
- $\mathbf{2}$ (iii) (a) How many one-one functions can be there from set S to set J?

OR

(iii) (b) Another student considers a relation $R_1 = \{(S_1, S_2), \{S_2, S_4\}\}$ in set S. Write minimum ordered pairs to be included in R_1 so that R_1 is reflexive but not symmetric.

 $\mathbf{2}$

Q37

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm².

Based on the above information, answer the following questions:

- (i) If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r.
- (ii) Find $\frac{dV}{dr}$.
- (iii) (a) Find the radius of cylinder when its volume is maximum.

OR

(b) For maximum volume, h > r. State true or false and justify. 2

Q38

A bank offers loan to its customers on different types of interest namely, fixed rate, floating rate and variable rate. From the past data with the bank, it is known that a customer avails loan on fixed rate, floating rate or variable rate with probabilities 10%, 20% and 70% respectively. A customer after availing loan can pay the loan or default on loan repayment. The bank data suggests that the probability that a person defaults on loan after availing it at fixed rate, floating rate and variable rate is 5%, 3% and 1% respectively.

Based on the above information, answer the following:

- (i) What is the probability that a customer after availing the loan will default on the loan repayment?
- (ii) A customer after availing the loan, defaults on loan repayment.
 What is the probability that he availed the loan at a variable rate of interest?

 $\mathbf{2}$

1