

K. R. MANGALAM WORLD SCHOOL, GK-11 PRE-BOARD 1 EXAMINATION (2025-26)

CLASS X / MATHEMATICS / SET 2

M.M. - 80

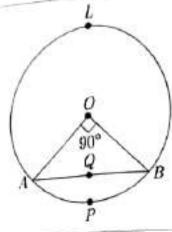
TIME: 3 Hrs.

General Instructions:

- 1. This Question Paper has 5 Sections A.E.
- 2. Section A has 20 MCQs carrying I mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in one part of Section

	neat figures wherever required. To	SECTIONA		(1)
Q1.	In an AP, if $a = 3.5$, $d = 0$ and $n = 3.5$	(6) 103.5	(d) 104.5	(1)
Q2.	The pair of equations $x + 2y + 5 =$ (a) a unique solution	(b) exactly two solutions	0112	(1)
Q 3.	The distance between the point. (a co	$\theta = \theta + b \sin \theta$, 0) and (0, 43		
24.	Value(s) of k for which the quadratic	equation $2x^2 - Kx + K = 0$.	(d) 0, 8	(1)
)5.	If the mean of the numbers $27 + x$, $31 + x$, $126 + x$, $68 + x$, $50 + x$, and $1 + x$	1 + x, $89 + x$, $107 + x$, $156 + x$	(d) 80	(1)
06.	If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the vertex $\frac{1}{2}$	slue of $(\alpha + \beta)$ is:	(d) 90°	(1)
7.	If the perimeter of the circle and squa	(C) 7:22	(0) 11.14	(1
8.	The area of the largest circle that can	(C) 1 2 % C(D)	1993 341 241	(1
0.	A letter is chosen at random from the probability that the letter chosen is a (a) 5 (b) 6	vowel is in the form of $\frac{6}{2x+1}$	then x is equal to:	
10.	In the given figure, two tangents AD zBAC = 120°, then OA is equal to:	B C		

(c) 4AB

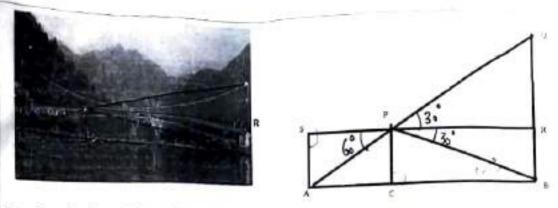

(b) 3AB

(a) 2AB

(d) AB

Q11 If
$$x = p \sec \theta$$
 and $y = q \tan \theta$, then (a) $x^2 - y^2 = p^2 = pq$ (c) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (d) $x^2 q^2 - y^2 p^2 = pq$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (d) $x^2 q^2 - y^2 p^2 = pq$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (d) $x^2 q^2 - y^2 p^2 = pq$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (d) $x^2 q^2 - y^2 p^2 = pq$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (d) $x^2 q^2 - y^2 p^2 = pq$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (e) $x^2 q^2 - y^3 p^2 = p^2 q^2$ (f) $x^2 q^2 - y^2 p^2 = pq$ (g) $x^2 q^2 - y^2 p^2 = pq$

2									
1.4	CM is 30								(1)
S	atement R(F × b.	teason):	For any to	wo positiv	e integers	a and b. H	CF (a, b) +	LCM (a, b)	
20. S	Statement A (Assertion): Common difference of the AP -5, -1, 3, 7, is 4. Statement R(Reason): Common difference of the AP a , $a + d$, $a + 2d$, is given by $d = a_2 - a_1$								(1)
			- SUET 1919	S	ECTION I	3			
21. S	olve the quad	ratic equ	ation $4x^2$	-5x - 1	2 = 0.				(2)
22) /	Valine intersect	as the y-a	axis and the	e x-axis a	t the point	s P and Q	respectively	7. If $(2, -5)$ is the	(2)
23, 1	n the figure, tooint T, prove	wo tange	ents TP and	d TQ are d	irawn to a	circle with	entre O f	rom an external	(2)
			-1	! ≪	OR DE LA P.C.)	shot AR + ('D = RC + DA	
Q24.	A circle touches all four sides of a quadrilateral ABCD. Prove that AB + CD = BC + DA Q24. A piece of wire 22 cm long is bent into the form of an arc of a circle subtending an angle of 60° at its centre. Find the radius of the circle.							(2)	
Q25.	If $\sin \theta + \cos \theta$	$0 = \sqrt{2}, 1$	then prove	that tan θ	+ cot θ = ! OR				(2)
	If tan (A + B	3) =√3 an	d tan (A -	B) = $\frac{1}{\sqrt{2}}$, ()° < A + B	≤ 90°, A	B, find A	and B.	
			C. Company	V2	SECTION	C	15 Mary Constanting	XXX.	
026	Drove that 5	- √5 is	irrational.		and the second s	parameters of the second			(3)
(2)	 Prove that 5 - √5 is irrational, it is given that √5 is irrational. If the equation (m² + n²)x² - 2(mp + nq)x + p² + q² = 0 has equal real roots, then prove that mq = np. OR Three consecutive natural number are such that the square of the middle number exceeds the difference of the squares of the other two by 60. Find the number. 							(3)	
Q28.		de of the	following	frequency	y distributi	on:			(3)
Q	permission	15-20	20-25	25-30	30-35	35-40	40-45	1	
	Class Frequency	-	8	9	10	3	2		
(029)	If 1 + sin ²	$\theta = 3\sin$	θ cosθ, pr	rove that t	$an \theta = 1$	or $\frac{1}{2}$.			(3)
Q30	(i) a sum less than 7? (ii) a doublet of odd numbers?						(3)		
Q3	of length 21 m. How much area of the field can it graze? OR						(3)		
	In the given figure, a chord AB of the circle with centre O and radius 10 cm, that subtends a right angle at the centre of the circle. Find the area of the minor segment AQBP. Hence, find the area of major segment ALBQA. (Use $\pi = 3.14$)								


		P				
		SECTION D	(5)			
Q32.	A vertical tower stands on horizontal plane and is surmounted by a vertical flagstaff of flagstaff of the fam. At a point on the ground, angle of elevation of the bottom and top of the flagstaff are 30° and 45° respectively. Find the height of the tower. OR From the top of tower, 100 m high, a man observes two cars on the opposite sides of the tower with the angles of depression 30° and 45° respectively. Find the distance between the cars. (Use					
Q33.	$\sqrt{3}$ -1.73). Find c if the system of equations $cx + 3y + (3 - c) = 0$; $12x + cy - c = 0$ has					
Q34.	infinitely many solutions.					
Q34.	same height and same diameter solid. The internal and external radii of and recast into a solid cylinder of the cylinder of the cylinder.	OR of a spherical shell are 3 cm and 5 cm respectively. It is melted of diameter 14 cm, find the height of the cylinder. Also, find the	(5)			
Q35.	+ State of the frequencies II and II in the					
	Classes	Frequencies				
	0-20 20-40 40-60 60-80 80-100	15 f ₁ 21 f ₂ 17				
	Total	100				
	SECTION E					

Case study-based questions are compulsory.

Lakshaman Jhula is located 5 kilometers northeast of the city of Rishikesh in the Indian state of Uttarakhand. The bridge connects the villages of Tapovan to Jonk. Tapovan is in Tehri Garhwal district, on the west bank of the river, while Jonk is in Pauri Garhwal district, on the east bank. Lakshman Jhula is a pedestrian bridge also used by motorbikes. It is a landmark of this Rishikesh.

(4)

A group of Class X students visited Rishikesh in Uttarakhand on a trip. They observed from a point (P) on a river bridge that the angles of depression of opposite banks of the river are 60° and 30° respectively. The height of the bridge is about 18 meters from the river.

Based on the above information answer the following questions.

- (i) Find the distance PA.
- Find the distance PB. (ii)
- A. Find the width AB of the river. (iii)

B. Find the height BQ if the angle of the elevation from P to Q be 30°.

In a GPS, the lines that run East-West are known as lines of latitude, and the lines running Q37. North-South are known as lines of longitude. The latitude and the longitude of a place are its coordinates, and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below.

Based on the above information answer the following questions using the coordinate geometry.

- Find the distance between Lucknow (L) to Bhuj(B). (i)
- If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into (ii) 3:2 then find the coordinate of Kota (K).
- A. Name the type of triangle formed by the places Lucknow (L), Nashik (N) and (iii) Puri (P)

(4)

Aditya is celebrating his birthday. He invited his friends. He bought a packet of candies which second there are 5 candies, in third there are 7 candies and so on. contains 120 candies. He arranges the candies such that in the first row there are 3 candies, in Lucknow (L) and Puri (P). B. Find a place (point) on the longitude (y-axis) which is equidistant from the point

Q38.

Based on the above information, answer the following questions:

(i) Find the total number of rows of candies.

How many candies are placed in last row?

A. Find the difference in number of candies placed in 7th and the 3rd rows.

by him with the same arrangements? B. If Aditya decides to make 15 rows, then how many total candies will be placed