

KENDRIYA VIDYALAYA SANGATHAN ZONAL INSTITUTE OF EDUCATION AND TRAINING MUMBAI

SOLVED SAMPLE QUESTION PAPERS CLASS XII MATHEMATICS SESSION 2024-25

PREPARED BY SAIJI B R TA MATHS ZIET MUMBAI

Sample Paper -01, SESSION 2024-25 CLASS: XII MATHEMATICS (Code-041) BLUE – PRINT

UNITS	NAME OF CHAPTERS	IE OF CHAPTERS SECTION A (Objective Type) (1 M EACH)		SECTION B (VSA) (2 MS	SECTION C (SA) (3 MS	D (LA) (5	SECTION E (CBQ) (4 MS	TOTAL
		MCQ	ARQ	EACH)	EACH)	MARKS EACH)	EACH)	
UNIT-I (Relations	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)
& Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)					
UNIT-II	MATRICES	2(2)						
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)			
	APPLICATION OF DERIVATIVE	2(2)					4*(1)	
	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		35(17)
	APPLICATION OF INTEGRATION			2*(1)	3(1)			
	DIFFERENTIAL EQUATION	2(2)			3*(1)			
UNIT-IV	VECTORS	1(1)		2(1)				
(Vectors & 3D)	THREE- DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

^(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE QUESTION PAPER-01

SESSION 2024-25

CLASS: XII

SUBJECT: -MATHEMATICS (041)

Time: - 3 Hours Max Marks: - 80

General Instructions:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculator is not allowed.

Q.	SECTION A	Marks							
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the								
	correct option (Question 1 - Question 18):								
1	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix}$, then $A + A' = I$, if the value of α is	1							
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{3\pi}{2}$								
2	If $A = [a_{ij}]$ is a symmetric matrix of order n, then	1							
	(a) $a_{ij} = \frac{1}{a_{ij}}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j								
	(c) $a_{ij} = a_{ji}$ for all i, j (d) $a_{ij} = 0$ for all i, j								
3	Let A be a non-singular square matrix of order 3×3 and $ adj A = 8$ then $ A $ is equal to	1							
	(a) ± 64 (b) ± 16 (c) ± 8 (d) none of the these								
4	For what value of x, matrix $\begin{bmatrix} 6 - x & 4 \\ 3 - x & 1 \end{bmatrix}$ is a singular matrix?	1							
	(a) 1 (b) 2 (c) -1 (d) -2								
5	If A and B are invertible matrices, then which of the following is not correct?	1							
	(a) $adj A = A \cdot A^{-1}$ (b) $det(A)^{-1} = [det(A)]^{-1}$								
	(c) $(AB)^{-1} = B^{-1} A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$								
6	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at	1							

	(a) 4 (b) -2 (c) 1 (d) 1.5 Derivative of sec $(\tan^{-1}x)$ w.r.t. x is	
7		1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The rate of change of the area of a circle with respect to its radius r, at $r = 6$ cm is	1
	(a) 10π (b) 12π (c) 8π (d) 11π	
9	(a) 10π (b) 12π (c) 8π (d) 11π On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ decreasing?	1
	(a) $(0,1)$ (b) $(\frac{\pi}{2},\pi)$ (c) $(0,\frac{\pi}{2})$ (d) None of these	
10	$\int \frac{dx}{\sin^2 x \cos^2 x}$ is equal to	1
	(a) $\tan x + \cot x + c$ (b) $\sin x + \cos x + c$	
	(c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$	
11	The value of $\int_{a}^{-a} \sin^{3}x dx$ is	1
	(a) a (b) a/3 (c) 1 (d) 0 The sum of the order and degree of the differential equation	
12		1
	$\left(d^2y\right)^3$, $\left(dy\right)^2$, dy	
	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} + 1 = 0 \text{ is}$	
13	(a) 3 (b) 2 (c) 1 (d) 5 Integrating factor of the differential equation $x^2 \frac{dy}{dx} + xy = x^3$ is:	1
	(a) x^2 (b) x (c) e^x (d) e^{x^2} If \vec{a} is nonzero vector of magnitude 'a' and λ is a nonzero scalar, then $\lambda \vec{a}$ is unit vector if	
14	If \vec{a} is nonzero vector of magnitude 'a' and λ is a nonzero scalar, then $\lambda \vec{a}$ is unit vector if	1
	(a) $\lambda = 1$ (b) $\lambda = -1$ (c) $a = \lambda $ (d) $a = \frac{1}{ \lambda }$	
15	The coordinates of the foot of the perpendicular drawn from the point $(2, 5, 7)$ on the x-axis	1
	are given by	
	(a) $(2, 0, 0)$ (b) $(5, 0, 0)$ (c) $(7, 0, 0)$ (d) $(0, 5, 7)$	
16	The feasible solution for a LPP is shown	1
	in given figure. Let $Z = 3x-4y$ be the (4.10)	
	objective function. Minimum of Z occurs at (0, 8)	
	a) (0,0) (6,5)	
	b) (0,8)	
	c) (5,0)	
	d) (4,10) (5,0)	
17	Inequation $y - x \le 0$ represents	1
1/		1
	 (a) The half plane that contains the positive x-axis (b) Closed half plane above the line y = x, which contains positive y-axis 	
	(c) Half plane that contains the negative x-axis	
	(d) None of these	
	(a) From or those	

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.) Both A and R are true and R is the correct explanation of A. (a) Both A and R are true but R is not the correct explanation of A. (b) A is true but R is false. (c) A is false but R is false. (d) A: The Principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)+2\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is equal to $\frac{5\pi}{4}$ and $\frac{5\pi}{4}$ a	18	If A and B are two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$, then (a) $P(B/A) = 1$ (b) $P(A/B) = 1$ (c) $P(A/B) = 0$ (d) $P(B/A) = 0$	1
R: Domain of $\cos^{-1} x$ and $\sin^{-1} x$ are respectively $(0, \pi)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ A: The following straight lines L_1 & L_2 are perpendicular to each other. $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$ R: Let line L_1 passes through the point (x_1, y_1, z_1) and parallel to the vector whose direction ratios are a_1, b_1 , and c_1 , and let line L_2 passes through the point (x_2, y_2, z_2) , and parallel to the vector whose direction ratios are $a_2, b_2,$ and c_2 . Then the lines L_1 & L_2 are perpendicular if $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$ SECTION B (This section comprises of 5 very short answer (VSA) type questions of 2 marks each.) 21 Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ 2 is transitive. 22 Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$ at $x = \pi$ 23 Find primitive of the function: $\frac{\sin(\tan^{-1}x)}{1+x^2}$ 2 2 2 2 2 2 2 2 2	Bot (a) (b)	(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. To attements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the coanswer from the options (A), (B), (C) and (D) as given below.) The A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. A is true but R is false.	
A: The following straight lines $L_1 \& L_2$ are perpendicular to each other. $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$ R: Let line L_1 passes through the point (x_1, y_1, z_1) , and parallel to the vector whose direction ratios are a_1, b_1 , and c_1 , and let line L_2 passes through the point (x_2, y_2, z_2) and parallel to the vector whose direction ratios are a_2, b_2 , and c_2 . Then the lines $L_1 \& L_2$ are perpendicular if $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$ SECTION B (This section comprises of 5 very short answer (VSA) type questions of 2 marks each.) 21 Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ 2 is transitive. 22 Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & if x \le \pi \\ \cos x, & if x > \pi \end{cases}$ at $x = \pi$ 23 Find primitive of the function: $\frac{\sin(\tan^{-1}x)}{1+x^2}$ 24 Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. 25 If $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors such that $[\vec{a}] = 2, [\vec{b}] = 3, [\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$. SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	19		1
Check whether the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is transitive. 22 Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & if \ x \le \pi \\ \cos x, & if \ x > \pi \end{cases}$ at $x = \pi$ 23 Find primitive of the function: $\frac{\sin(\tan^{-1}x)}{1+x^2}$ 24 Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. 25 If $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors such that $[\vec{a}] = 2, [\vec{b}] = 3, [\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$. SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	20	$\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$ R : Let line L ₁ passes through the point (x_1, y_1, z_1) and parallel to the vector whose direction ratios are a_1, b_1 , and c_1 , and let line L ₂ passes through the point (x_2, y_2, z_2) and parallel to the vector whose direction ratios are a_2, b_2 , and c_2 . Then the lines L ₁ & L ₂ are perpendicular if $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$ SECTION B	
Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & if \ x \le \pi \\ \cos x, & if \ x > \pi \end{cases}$ at $x = \pi$ 23 Find primitive of the function: $\frac{\sin(tan^{-1}x)}{1+x^2}$ 24 Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. 25 If $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors such that $[\vec{a}] = 2, [\vec{b}] = 3, [\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find the value of $\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$. SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	21	Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$	
Find primitive of the function: $\frac{\sin(tan^{-1}x)}{1+x^2}$ Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + 2$ $y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. 25 If \vec{a} , \vec{b} , \vec{c} are non-zero vectors such that $[\vec{a}] = 2$, $[\vec{b}] = 3$, $[\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a} . SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	22	Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point	2
Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1.$ 25 If \vec{a} , \vec{b} , \vec{c} are non-zero vectors such that $ \vec{a} = 2$, $ \vec{b} = 3$, $ \vec{c} = 5$ and $ \vec{a} + \vec{b} + \vec{c} = 0$. find the value of $ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} $. SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	23		2
the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	24	Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.	2
SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	25	If \vec{a} , \vec{b} , \vec{c} are non-zero vectors such that $[\vec{a}] = 2$, $[\vec{b}] = 3$, $[\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find	2
		SECTION C	•
26 If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	26	If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	3

27	Evaluate: $\int \frac{\sin x}{\sin(x-a)} dx$	3
	Evaluate: $\int \frac{1}{\sin(x-a)} dx$	
	OR	
	Evaluate: $\int_0^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2 x} dx$	
28	Find the area of the region bounded by the parabola $y = x^2$ and $y = x $.	3
29	Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ OR	3
	Solve the differential equation $x \frac{dy}{dx} + 2y = x^2$; $(x \neq 0)$	
30	Solve the following Linear Programming Problem graphically:	3
	Maximize $Z = 5x + 2y$,	
	subject to the constraints:	
	$x-2y\leq 2,$	
	$3x + 2y \le 12,$	
	$-3x + 2y \le 3,$	
	$x \ge 0$, $y \ge 0$.	
31	Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X). OR	3
	The random variable X has a probability distribution $P(X)$ of the following form, where k is some number:	
	$\begin{cases} k, & \text{if } x = 0 \\ 2k, & \text{if } x = 1 \end{cases}$	
	$P(X) = \begin{cases} k, & \text{if } x = 0\\ 2k, & \text{if } x = 1\\ 3k, & \text{if } x = 2 \end{cases}$	
	(a) Determine the value of k.	
	(b) Find P $(X < 2)$,	
	(c) Find P ($X \ge 2$), SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	
32	Let A = R - {3}, B = R - {1}. Let f: A \rightarrow B be defined by f(x) = $\frac{x-2}{x-3}$ \forall x \in A. Then	5
	show that f is bijective.	
	OR Let n be a fixed positive integer. Define a relation P in 7 as follows: We h 57, aPh if and	
	Let n be a fixed positive integer. Define a relation R in Z as follows: $\forall a, b \in \mathbb{Z}$, aRb if and only if $a - b$ is divisible by n. Show that R is an equivalence relation.	

33	Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of equations $-4x + 4y + 4z = 16,$ $-7x + y + 3z = 4$	5						
	5x - 3y - z = -4.							
34	Evaluate $\int \frac{\sqrt{x^2+1} \left[\log(x^2+1)-2\log x\right]}{x^4} dx$	5						
	OR							
	Evaluate $\int_0^{\frac{\pi}{2}} \log \cos x \ dx$.							
35	Find the vector equation & cartesian equations of the line which is perpendicular to the lines with equations	5						
	$\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4} \text{ and } \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$							
	and passes through the point $(1,1,1)$. Also find the angle between the given lines.							
	CECTION E	1						

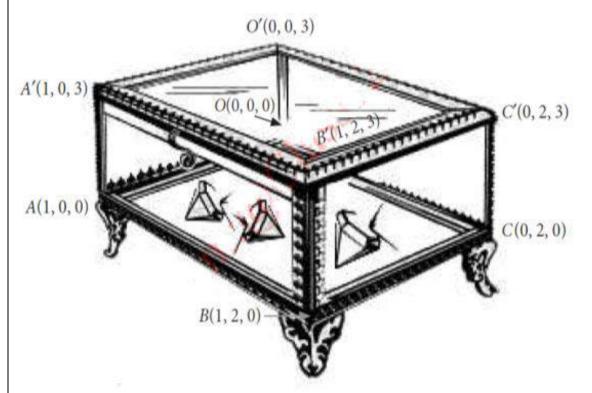
SECTION E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

The Government declare that farmers can get Rs 300 per quintal for their Tomatoes on 1st July and after that, the price will be dropped by Rs 3 per quintal per extra day. Raman's father has 80 quintal of Tomatoes in the field on 1st July and he estimates that crop is increasing at the rate of 1 quintal per day.

Based on the above information, answer the following questions.

- (i) If x is the number of days after 1st July, then write price and quantity of Tomato in terms of x.
- (ii) Find the Revenue in terms of x.
- (iii) Find the number of days after 1st July, when Raman's father attains maximum revenue.


OR

On which day should Raman's father harvest the tomatoes to maximise his revenue?

1

1

In a diamond exhibition, a diamond is covered in cubical glass box having coordinates O(0, 0, 0), A(1, 0, 0), B(1, 2, 0), C(0, 2, 0), O'(0, 0, 3), A'(1, 0, 3), B'(1, 2, 3) and C'(0, 2, 3).

Based on the above information, answer the following questions.

- (i)Find the Direction ratios of OA
- (ii) find the Equation of diagonal OB'
- (iiI) find the Equation of Line O'B'

Husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is $\frac{1}{7}$ and that of wife's

selection is $\frac{1}{5}$.

Based on the above information, answer the following questions.

- (i) Both of them will be selected.
- (ii) Only one of them will be selected.

2

1

MARKING SCHEME

SQP-01, 2024-25

CLASS: XII

SUBJECT: MATHEMATICS (041)

Q. No					TION – A		,		Marks	
		1 1	_			1	I	1 1	20	
	1	(b)	6	(d)	11	(d)	16	(b)		
	2	(c)	7	(a)	12	(d)	17	(a)		
	3	(d)	8	(b)	13	(b)	18	(b)		
	4	(b)	9	(d)	14	(d)	19	(c)		
	5	(d)	10	(c)	15 CTION – B	(a)	20	(a)		
21	Given a co	orrect evan	nnle	<u>512</u>	CIION - D				1	
21	∴ R is not								1	
22			both sides						1	
				respect to x					1	
	So $\frac{dy}{dy} = \frac{y}{y}$	$(y-x\log y)$		1						
	So $\frac{dy}{dx} = \frac{y}{x}$	$(x-y\log x)$								
	f(x) is co	ntinous d	at $x = \pi$							
	LHL = RH								1	
	$k = \frac{-2}{}$, , ,								
	π								1	
23	Let tan ⁻¹		4 .						1/2	
	Primitive								1 ½	
24		ct diagram							1/2	
	$y = \sqrt{5^2 - 1}$	$-\chi^2$,							1/2	
	required a	area = $\frac{23\pi}{4}$	square uni	S.					1	
	OI								1 1/2	
	For correc								1/2	
	$y = \frac{4}{5}\sqrt{5^2 - x^2}$									
	required area $=5\pi$ square units.									
25		a,b,c are unit vectors								
		$ \vec{a} = 2, \vec{b} = 3, \vec{c} = 5$								
	$\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (given)									
	`	,	$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c}$	$+\vec{c}.\vec{a})=0$						
	4+9+25+2									
	$ \vec{a}.\vec{b}+\vec{b}.$			U					1	
	$\cdots u. v + v.$	<u>ι + ι.α –</u>	19						•	

	SECTION C	
26	$y = 3\cos(\log x) + 4\sin(\log x)$	
	$\frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x)\frac{1}{x} + 4\cos(\log x)\frac{1}{x}$	1
	V	1
	$x\frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x) + 4\cos(\log x)$	
	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -3\cos(\log x)\frac{1}{x} - 4\sin(\log x)\frac{1}{x}$	1
	$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = -\{3\cos(\log x) + 4\sin(\log x)\}\$	
	$x^2y_2 + xy_1 + y = 0$	1
27	Dut t -y o	1/2
	Put t =x-a	1/2
	So $\int \frac{\sin(t+a)}{\sin t} dt$	/2
	$\sin t$	
	So ans is $\sin a \log \sin(x-a) + x \cos a + c$	2
	OR	
	Let sinx-cosx=t	1/2
		1
	$\int_{0}^{\infty} \frac{dt}{9+16(1-t^2)}$	1
	$\int_{-1}^{1} 9 + 10(1 - t^{-})$	1 ½
	Ans is $\frac{\log 9}{40}$	
20	10	1/
28	For correct diagram $A = 2 \int_0^1 x dx - 2 \int_0^1 x^2 dx$	1/2
	Required area = $1/3$ sq. unit	1 ½
	It is a homogenous differential equation,	
29	Put y= vx	1
	Then $dv = dx/x$	1
	$\frac{y}{x} = \log cx$	
	y	1
	$x = ke^{\frac{y}{x}}$	
	dy y	1/2
	$\frac{dy}{dx} + 2\frac{y}{x} = x$ I.F. = x^2	72
	$I.F. = x^2$	1
	$yx^2 = \frac{x^4}{4} + c$	1.5
1		1.0

30	correct grap	h					1				
	correct corn	er poi	ints				1				
	Hence, Z is	maxi	mum at	$x = \frac{7}{2}, y$	$=\frac{3}{4}$ and	maximum value = 19	1				
31	X can take	values	2, 3, 4,	5, 6	•		1				
	(:1 cannot l										
	X	2	3	4	5	6					
	D(II)	2	4		0	10					
	P(X)	$\frac{2}{2}$	$\frac{4}{20}$	$\frac{6}{20}$	8	$\left \begin{array}{c} 10 \\ \hline 30 \end{array}\right $	1				
	V D(V)	30	30 12	30 24	30 40	30 60	1				
	X.P(X)	$\frac{4}{30}$	$\frac{12}{30}$	$\frac{24}{30}$	$\frac{40}{30}$	$\left \begin{array}{c} \frac{60}{30} \end{array} \right $					
		30	30	30	30	30					
	Maan of Y-	-E(Y)	-∇ Υ D <i>C</i>	$(Y) = \frac{4+1}{2}$	2+24+40+	60 _ 140 _ 14	1				
	Wiean of A-	-L(A)	_ <u></u>	Λ) – —	30	$\frac{60}{0} = \frac{140}{30} = \frac{14}{3}$ OR					
	The random	varia	hle X ha	as a prob	ability d	istribution $P(X)$ of the following form, where k is					
	some numb		1010 11 11	as a proc	aomiy a	istroution I (II) of the following form, where wis					
	X	0	1	2	OTH	IERWISE					
	P(X)	K	2K	3K		0	1				
					should	be	1				
			3k=1	⇒k=1/6		_ 1	1				
	(b) P(x<	(2)=p	(x=0)+p	(X=1)=K· 1,	$+2k=3(\frac{1}{6})$)= - 2	1				
	(c) P(x)	≥2)= <i>3</i>	$3k+0=3(-\frac{1}{6})$	$\frac{1}{5}$)+0 = $\frac{1}{2}$							
22	E ONE C	NIE			<u>SE</u>	CTION D	2.5				
32	For ONE -C For Onto:	INE					2.5 2.5				
	FOI OIIIO.					OR	2.3				
	Reflexivity:					OK .	1.5				
	R is reflexive	e.									
	Symmetry:						1.5				
	R is symmet										
	Transitivity R is transitive						2				
	∴R is Equiva		Relation	-							
33	I D Lyuive				4] [1	-1 1] [8 0 0]	1				
			-	7 1	3 1	$-2 -2 = \begin{vmatrix} 0 & 8 & 0 \end{vmatrix}$					
	$\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$										
	1 [1 -1 1]										
	$B^{-1} = \frac{1}{8} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$										
	Matri C	C			C	'l2 1 3 J	1				
	Matrix form of equations										
	Maurix form	i oi ec	quations								
	Matrix form	1 01 e0	quations				1				

	$\frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ -4 \end{bmatrix}$	
	$X=B^{-1}C$	2
	Hence $x = 1$, $y = 2$ and $z = 3$.	
34	$\int \sqrt{\frac{x^2+1}{x^2}} \log(\frac{x^2+1}{x^2}) \frac{1}{x^3} dx$	1
	Put $\sqrt{\frac{x^2+1}{x^2}} = t$, Required answer $= -\frac{1}{3} \left[\frac{x^2+1}{x^2} \right]^{\frac{3}{2}} \left[\log \frac{x^2+1}{x^2} - \frac{2}{3} \right] + c$	1
	$_{\pi}^{ m CR}$	
	Let $I = \int_0^{\frac{\pi}{2}} \log \cos x \ dx$ (i)	3
	Then, using P-4	
	$I = \int_0^{\frac{\pi}{2}} \log \cos(\frac{\pi}{2} - x) \ dx = \int_0^{\frac{\pi}{2}} \log \sin x \ dx (ii)$	
	$\frac{n}{2}$	
	$2I = \int \log(\sin x \cos x) dx$	1
	0	
	$2I = -\pi \log 2$	2
	$2I = -\pi \log 2$ $I = -\frac{\pi}{2} \log 2$	
	L	2
35	Find drs of required line where a=-4, b= 4 & c=-1	1
	Equation of required line in vector equation & cartesian equations: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$	1
	$\& \vec{r} = (\hat{i} + \hat{j} + \hat{k}) + \lambda(-4\hat{i} + 4\hat{j} - \hat{k})$	1 1
	And find angle $\theta = \cos^{-1} \frac{24}{\sqrt{609}}$	2
	SECTION E	-
36	(i) $(300-3x) & (80+x)$	1
	(ii) $-3x^2 + 60x + 24000$ (iii) 10	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
	OR	\(^{\alpha}\)
	11 th July	
37	(i) Direction ratios of $OA = 1,0,0$	1
	(ii) the Equation of diagonal $OB' = \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
	(iiI) Equation of Line is $O'B' = \frac{x}{1} = \frac{y}{2} = \frac{z-3}{0}$	
38	$(i)\frac{1}{35}$ $(ii)\frac{2}{7}$	2+2
	(i) $\frac{1}{35}$ (ii) $\frac{2}{7}$	

SAMPLE QUESTION PAPER -02, 2024-25 BLUEPRINT

CLASS: XII MATHEMATICS (Code-041)

UNITS	NAME OF CHAPTERS	SECTION A (Objective Ty (1 MARK EA	ype)	SECTION B (VSA) (2 MARKS	SECTION C (SA) (3 MARKS	SECTION D (LA) (5 MARKS	SECTION E (CBQ) (4 MARKS EACH)	TOTAL
		MCQ	ARQ	EACH)	EACH)	EACH)	Ziron)	
UNIT-I (Relations &	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)
Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)					
UNIT-II	MATRICES	2(2)						
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)			
	APPLICATION OF DERIVATIVE	2(2)					4*(1)	35(17)
	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		
	APPLICATION OF INTEGRATION			2*(1)	3(1)			
	DIFFERENTIAL EQUATION	2(2)			3*(1)			
UNIT-IV	VECTORS	1(1)		2(1)				
(Vectors & 3D)	THREE-DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

^(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE QUESTION PAPER-02

2024-25 CLASS: XII

SUBJECT: -MATHEMATICS (041)

Time: - 3 Hours Max Marks: - 80

General Instructions:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii)This Question paper is divided into five Sections A, B, C, D and E.

- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculator is not allowed.

Q.	SECTION – A	Marks
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the	
	correct option (Question 1 - Question 18):	
1	If $\begin{bmatrix} x - y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$, then value of y is	1
	(a) 1 (b) 3 (c) 2 (d) 5	
2	(a) 1 (b) 3 (c) 2 (d) 5 The $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then A^2 is equal to	1
	(a) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
3	Let A be a non-singular square matrix of order 3×3 and $ adj A = 64$ then $ A $ is equal to	1
	(a) ± 64 (b) ± 16 (c) ± 8 (d) none of the these	
4	If $A = \begin{bmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}$, then A^{-1} exists, if	1
	(a) $\lambda = 2$ (b) $\lambda \neq 2$ (c) $\lambda \neq -2$ (d) None of these	
5	(a) $\lambda = 2$ (b) $\lambda \neq 2$ (c) $\lambda \neq -2$ (d) None of these If A is a square matrix of order 3×3 such that $ A = 2$, then the value of $ adj(adj A) $ is	1
	(a)-16 (b) 16 (c) 0 (d) 2	
6	The function $y = x - 5 $ is	1
	(a) Continuous at $x = 5$	
	(b) Differentiable at $x = 5$	
	(c) Both continuous and differentiable at $x = 5$	
	(d) Neither continuous nor differentiable at $x = 5$	
7	Derivative of sec $(\tan^{-1}x)$ w.r.t. x is	1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The function $f(x)=x^x$ is decreasing in the interval:	
	(a) $(0,e)$ (b) $(0,\frac{1}{e})$ (c) $(0,1)$ (d) none of these	

9	For the function $y=x^3+21$, the value of x, when y increases 75 times as fast as x, is (a) ± 3 (b) $\pm 5\sqrt{3}$ (c) ± 5 (d)none of these	1
10	If $\int (\sin 2x - \cos 2x) dx = \frac{-1}{\sqrt{2}} \sin(2x - a) + c$, then $a =$	1
	·	
11	$\frac{(a)_{4}^{2}}{4} \qquad (b) \frac{1}{4} \qquad (c)_{4} \qquad (d) \text{ None of these}$	1
11	$(a)\frac{\pi}{4} \qquad (b) - \frac{\pi}{4} \qquad (c) \frac{5\pi}{4} \qquad (d) \text{ None of these}$ $\int \frac{e^{tan^{-1}x}}{1+x^2} dx =$	1
	(a) $\frac{e^{tan^{-1}x}}{1+x^2} + c$ (b) $x^2 e^{tan^{-1}x} + c$ (c) $e^{tan^{-1}x} + c$ (d) $\frac{e^{tan^{-1}x}}{x} + c$	
12	The order of the differential equation $2x^3 \frac{d^2y}{dx^2} - 36 \frac{dy}{dx} + y = 0$ is	1
	(a) 2 (b) 1 (c) 0 (d) not defined	
13	(a) 2 (b) 1 (c) 0 (d) not defined The general solution of $\frac{dy}{dx} + y \tan x = \sec x$ is	1
	(a) $v \sec x = \tan x + C$ (b) $v \tan x = \sec x + C$	
	(c) $\tan x = y \tan x + C$ (d) $x \sec x = \tan y + C$ If $\vec{a} = 7i + j + 4k$ and $\vec{b} = 2i - 6j + 3k$, then the projection of \vec{a} on \vec{b} is	
14	If $\vec{a} = 7i + j + 4k$ and $\vec{b} = 2i - 6j + 3k$, then the projection of \vec{a} on \vec{b} is	1
	(a) $\frac{11}{7}$ (b) $\frac{8}{7}$ (c) $\frac{-11}{7}$ (d) None of these	
15	The equation of line passing through the point $(-2,4,-5)$ and parallel to the line $\frac{x+3}{3}$ =	1
	$\frac{y-4}{5} = \frac{z+8}{6}$ is	
	(a) $\frac{x-2}{3} = \frac{y-4}{5} = \frac{z-5}{6}$ (b) $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$	
	(c) $\frac{x+3}{-2} = \frac{y-4}{4} = \frac{z+8}{-5}$ (d) $\frac{x+2}{-2} = \frac{y-4}{4} = \frac{z+5}{-5}$	
16	A linear programming problem is one that is concerned with	1
	(a) finding the optimal value (maximum or minimum) of a linear function of several	
	variables. (b) finding the limiting values of a linear function of several variables	
	(c) finding the lower limit of a linear function of several variables	
	(d) finding the upper limits of a linear function of several variables.	
17	Inequation $y - x \le 0$ represents	1
	(a) The half plane that contains the positive x-axis (b) Closed half plane above the line y = x, which contains positive x axis	
	(b) Closed half plane above the line y = x, which contains positive y-axis(c) Half plane that contains the negative x-axis	
	(d) None of these	
18	If A and B are two events such that: $P(A) = 0.40$, $P(B) = 0.35$ and $P(A \cup B) = 0.55$, find	1
	P(B/A) is	
	(a) $\frac{1}{2}$ (b) $\frac{4}{7}$ (c) $\frac{2}{7}$ (d) None of the above	

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- Both A and R are true and R is the correct explanation of A. (a)
- Both A and R are true but R is not the correct explanation of A. (b)
- A is true but R is false. (c)
- A is false but R is true. (d)

19	Assertion (A): The principal value branch of function $\cos^{-1} x$ is $[0, \pi]$	1
	Reason (R): The value of $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$ is $\frac{3\pi}{2}$.	

Assertion (A): Vector equation of a line which passes through two points whose position 20 vector are \vec{a} and \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$.

Reason (R): Vector equation of a line passing through the given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$.

SECTION B

(This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)

21	If the relation R is defined on a set A of people living in a Town by aRb , if and only if b	2
	lives within one kilometre from a , then check if the relation is reflexive, symmetric.	
22	Find Derivative of $f(x) = tan^{-1}(\sqrt{1+x^2} + x)$ with respect to x.	2

Find Derivative of $f(x) = tan^{-1}(\sqrt{1+x^2} + x)$ with respect to x. 22

OR

If
$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, x \neq 5 \\ k, x = 5 \end{cases}$$
 is continuous at $x = 5$, find the value of k.

Integrate $\frac{2x}{x^2 + 3x + 2}$.

Integrate
$$\frac{2x}{x^2+3x+2}$$
.

Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and line x + y = 2. 24

Find the area of the ellipse $x^2 + 9y^2 = 36$ using integration.

If \vec{a} and \vec{b} are vectors such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and \vec{a} . $\vec{b} = 4$ then find $|\vec{a} - \vec{b}|$. 25

(This section comprises of 6 short answer (SA) type questions of 3 marks each.)

26	If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ and $x \neq y$, prove that $\frac{dy}{dx} = -\frac{1}{(x+1)^2}$.	3
27	Integrate $\sqrt{x^2 + 4x + 6}$	3
	OR	

Prove that $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$

Find the area of the minor segment of the circle
$$x^2 + y^2 = a^2$$
 cut off by the line $x = \frac{a}{\sqrt{2}}$.

28 Solve the differential equation
$$(\tan^{-1} y - x)dy = (1 + y^2)dx$$
OR
Solve the differential equation $\frac{dy}{dx} + 3y = e^{-2x}$

2

2

		1
30	Solve the following problem graphically:	3
	Maximize $Z = 3x+9y$ subject to $x+3y \le 60$, $x + y \ge 10$, $x \le y$, $x \ge 0$, $y \ge 0$	
31	Two numbers are selected at random (without replacement) from the first six positive	3
	integers. Let X denote the larger of the two numbers obtained. Find E(X).	
	OR	
	Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively.	
	If both try to solve the problem independently then find the probability that	
	(a) The problem is solved	
	(b) Exactly one of them solve the problem.	
	SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	
32	Let $A = R - \left\{\frac{3}{2}\right\}$, $B = R - \left\{\frac{3}{2}\right\}$. Let $f: A \to B$ be defined by $f(x) = \frac{3x-2}{2x-3} \ \forall \ x \in A$. Then	5
	show that f is bijective.	
	OR	
	Let n be a fixed positive integer. Define a relation R in Z as follows: $\forall a, b \in Z$, aRb if and	
	only if $a - b$ is divisible by 4. Show that R is an equivalence relation.	
33	Find the the product $\begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$ and using it solve the system of equations	5
	Find the product $\begin{vmatrix} 2 & 1 & 3 \end{vmatrix} \begin{vmatrix} -2 & 1 & -3 \end{vmatrix}$ and using it solve the system of equations	
	l0 -2 1	
	x - 2y = 10, 2x + y + 3z = 8, -2y + z = 7.	
34		5
	OR	
	Evaluate: $\int_0^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) dx$.	
35	Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$.	5
	SECTION E	

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

A student of class XII wants to construct a rectangular tank for his house that can hold 80 cubic feet of water. The top of the tank is open. The width of tank will be 5 ft but length and heights are variables. Building the tank cost Rs 20 per sq. ft for the base and Rs. 10 per square ft for the side.

Based on above information, answer the following: (i) Represent Total cost of tank as a function of h?

(ii) What is the value of h at which the cost of tank is minimum?

	(iii) Find the least cost of tank?	2
	OR	
	Find the total cost building the wall of tank.	
37	If a ₁ , b ₁ , c ₁ and a ₂ , b ₂ , c ₂ are direction ratios of two lines say L ₁ and L ₂ respectively. Also, If l ₁ , m ₁ , n ₁ and l ₂ , m ₂ , n ₂ are direction cosines of two lines say L ₁ and L ₂ respectively. Based on the above information, answer the following questions (a) What is the relation between the direction cosines of lines L1 and L ₂ , if L ₁ is perpendicular to L ₂ ? (b) What is the relation between the direction cosines of lines L1 and L ₂ , if L ₁ is parallel to L ₂ ? (c) Find the coordinates of the foot of the perpendicular drawn from the point A(1, 2, 1) to the line joining B(1, 4, 6) and C(5, 4, 4)? OR Find the direction ratios of the line which is perpendicular to the lines with direction ratios	1 1 2
	proportional to 4, -3, 5 and 3, 4,5.	
38	In an office 3 employees Vinay, Sonia and Iqbal process incoming copies of a certain form. Vinay process 50 % of the forms. Sonia processes 20% and Iqbal the remaining 30% of the forms. Vinay has an error rate of 0.06. Sonia has an error rate of 0.04 and Iqbal has an error rate of 0.03	
	(i) What is the conditional probability that Sonia processes the form and an error is committed in processing?(ii) What is the total probability of committing an error in processing the form?	2 2

SAMPLE QUESTION PAPER- 02

<u>2024-25</u>

CLASS: XII

SUBJECT: MATHEMATICS (041) MARKING SCHEME

Q. No	Question <u>SECTION – A</u>								
				T		1	1		20
	1	(a)	6	(a)	11	(c)	16	(a)	
	2	(d)	7	(a)	12	(a)	17	(b)	
	3	(c)	8	(b)	13	(a)	18	(a)	

	4	(d)	9	(c)	14	(d)	19	(c)			
	5	(b)	10	(b)	15	(b)	20	(a)			
				SE	CTION – B						
21	To show R								1		
22	To show R								1		
22	f(x) = ta	•	٠.	. –1					1		
			$(x) = \frac{\pi}{4} + \frac{1}{2}$	tan *x							
	$f'(x) = \frac{1}{2(x)}$	$G'(x) = \frac{1}{2(1+x^2)}.$									
23	$\int \frac{2x}{x^2+3x+2}.$	$dx = \int \frac{dx}{dx}$	$\frac{2x}{(x+1)(x+2)} dx$	χ,					1/2		
	$\frac{2x}{(x+1)(x+2)}$								1/2		
	(30 1 1)(30 1 1)	20.1	20.12	+ 1) + 4log(w 2) a				1		
24	For correct		-2 10g(X -	1 1) T 410g(λ + Δ) + C.				1		
2 4		\mathcal{C}	Area = π -	- 2.					$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		
					OR						
	For correct	_	A 4.2	_					1		
2.5	-	=	Area = 12a						1		
25		,	$)= \vec{a} ^2+$	$\left \vec{b}\right ^2 - 2\vec{a}.\vec{b}$	= 4 + 9 - 8	8 = 5.			1+1/2 1/2		
	$\left \vec{a} - \vec{b} \right =$	$\sqrt{5}$.							1/2		
26				<u>SI</u>	ECTION C				1		
26			11.01	•	$y = -y\sqrt{1+y}$	X			$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		
	On squaring Correct des	-	nplification	l							
	Correct de	iivative							1		
27	C		C						1+1/2		
	$\sqrt{x^2+4}$	$\frac{1}{4x+6}dx$	$x = \int \sqrt{(x)}$	$+2)^2 + 2 dx$	x						
	J		J						1+1/2		
	$=\frac{x+2}{2}$	$\frac{1}{x^2+4x}$	$\phantom{00000000000000000000000000000000000$	$x + 2 + \sqrt{x^2}$	$\frac{1}{x^2 + 4x + 6}$				1 1/2		
28	For correct		٦١	•	<u> </u>				1		
	For finding	Shaded	Area = $\frac{(\pi + \frac{\pi}{4})^2}{4}$	$\frac{2)}{2}a^{2}$.					2		
	For correct										
29				$y - 1 + ce^{-}$	-tan ⁻¹ y				1		
					OR				2		
	For correct		$e^{3x}y = e^{3x}$: ± c					-		
	Tor correct	i solution	$y - e^{x}$	て し、					1		
									2		
30	Correct fig	gure							1		
			sible Regio	n					1		

	For Maximum value of Z.	1
31	For correct table	2
	For correct $E(x) = \frac{14}{3}$	1
	OR	
	(a) $P(Problem \ will \ be \ solved) = \frac{2}{3}$	1+1/21
		+1/2
	(b) $P(\text{Exactly one of them solve the problem}) = \frac{1}{2}$	
	SECTION D	
32	For ONE -ONE	2.5
	For Onto:-	2.5
	OR	
	Reflexivity:	1.5
	R is reflexive.	
	Symmetry:	1.5
	R is symmetric	
	Transitivity:	2
	R is transitive	
22	∴R is Equivalence Relation.	1
33	For correct multiplication of matrices For correct inverse of coefficient matrix	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
		$\frac{2}{2}$
2.4	For correct solution $(x = 4, y = -3, z = 1)$.	2
34	For correct solution ($x = 4$, $y = -3$, $z = 1$). $\frac{1 - x^2}{x(1 - 2x)}$ is an improper rational function, which can be rewritten as	
	$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{-\frac{x}{2}+1}{x(1-2x)}$	
	$\frac{-\frac{x}{2}+1}{x(1-2x)} = \frac{A}{x} + \frac{B}{(1-2x)}$	
	x-2=A(1-2x)+Bx	
	On comparing of coefficient of x and constant, we get $A=-2$ and $B=-3$	
	$\frac{-\frac{x}{2}+1}{x(1-2x)} = \frac{-2}{x} + \frac{-3}{(1-2x)}$	
	$\int \frac{\frac{-x}{2} + 1}{x(1 - 2x)} dx = \int \frac{-2}{x} dx + \int \frac{-3}{(1 - 2x)} dx$	
	$I = -2\log x - 3\frac{\log(1-2x)}{-2} + c$	
	$I = -2 \log x + \frac{3}{2} \log(1 - 2x) + c$	
	$I = \frac{x}{2} - 2\log x + \frac{3}{2}\log(1 - 2x) + c$	

	OR	
	$\int_0^{\frac{\pi}{2}} (2\log\sin x - \log\sin 2x) dx$	
	$I = \int_0^{\frac{\pi}{2}} log\left(\frac{\sin^2 x}{2\sin x \cos x}\right) dx$	
	$I = \int_0^{\frac{\pi}{2}} \log\left(\frac{\tan x}{2}\right) dx$	
	$I = \int_0^{\frac{\pi}{2}} log\left(\frac{tan\left(\frac{\pi}{2} - x\right)}{2}\right) dx = I = \int_0^{\frac{\pi}{2}} log\left(\frac{cot x}{2}\right) dx$	
	$2I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{\tan x}{2}\right) \left(\frac{\cot x}{2}\right) dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{4}\right) dx$	
	$I = \frac{\pi}{4} \log \left(\frac{\pi}{4} \right).$	
35	Correct formula Correct Answer	1 4
	SECTION E	1 4
36	(a) $C(h) = 100 h + 320 + \frac{1600}{h}$	1
	(b) For $h = 4$	1
	(c) 1120	2
	OR	
	720	
37	(a) $l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	(b) $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	(c) (3, 4, 5)	
	OR The direction ratios of the line perpendicular to the lines with direction ratios proportional	
	to 4, -3, 5 and 3, 4,5 are -5, -7, 7.	
38	(i) 0.04	2
	(ii) 0.045	2

SAMPLE PAPER 03 (2024-25)

BLUE PRINT

CLASS-XII

SUBJECT- MATHEMATICS (041)

Time Allowed: - 3:00 Hours

Maximum marks: - 80

S.NO	Name of Chapter	(MCQs & Assertion-Reason based) (1 mark)	VSA (2 Marks questions)	SA (3 Marks questions)	LA 5 Marks questions	(Case study- based question) (4 Marks)	TOTAL	UNIT WISE TOTAL
1	Relations and Functions	1(1)			1* (5)		2 (6)	
2	Inverse Trigonometric Functions		1* (2)				1 (2)	3 (8)
3	Matrices	1(1)	1(2)				2(3)	
4	Determinants	1 (1)+ 1(AS- R)(1)			1 (5)		3 (7)	6 (10)
5	Continuity and Differentiability	2 (2)	1*(2)	1 (3)			4 (7)	
6	Applications of Derivatives	2(2)	1 (2)			1 (4) (1+1+2)	4(8)	
7	Integrals	2(2)	1 (2)	1 (3) +1*(3)			5(10)	16 (35)
8	Applications of Integrals				1 (5)		1 (5)	
9	Differential equations	2 (2)		1* (3)			3 (5)	
10	Vector Algebra	2(2)				1 (4) (1+1+2*)	3 (6)	
11	Three- Dimensional Geometry	2(2) + 1(AS- R)(1)			1* (5)		4 (8)	7 (14)
12	Linear Programming	2 (2)		1(3)			3 (5)	

13	Probability	1 (1)		1* (3)		1 (4) (1+1+2*)	3 (8)	6 (13)
TOTAL		20 (20)	5 (10)	6 (18)	4 (20)	3 (12)	38(80)	20 (00)
								38 (80)

No. of questions (Marks)

* Internal Choice Questions,

AS-R = **Assertion-Reason**

SAMPLE QUESTION PAPER-03 (2024-25)

SUBJECT: MATHEMATICS (041)

Time: - 3 Hours CLASS: XII Max Marks: - 80

General Instructions:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no.
- 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculator is not allowed.

Q	SECTION A	Ms
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the	
	correct option (Question 1 - Question 18):	
1	Set A has 3 elements and Set B has 5 elements. Then the number of injective functions that	1
	can be defined from set A to set B are	
	(a) 15 (b) 64 (c) 60 (d) 20	
2	The degree of the differential equation: $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \sin\left(\frac{d^2y}{dx^2}\right)$	1
	(a)1 (b)2 (c)3 (d)Not defined	
3	The unit vector perpendicular to the vectors $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ forming a right-handed	1
	system is:	
	(a) \hat{k} (b) $-\hat{k}$ (c) $\frac{\hat{k}}{2}$ (d) $-\frac{\hat{k}}{2}$	
4	The point which does not lie in the half plane $x - 2y - 1 \le 0$ is	1
	(a) $(1,2)$ (b) $(4,1)$ (c) $(0,2)$ (d) $(-3,2)$	

5	The angle between the lines passing through the points of first line (6,7,8), (4,3,4) and points of second line (-2, -2,1), (0,2,5) is	1
	and points of second line $(-2, -2, 1)$, $(0, 2, 5)$ is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) 0° (d) $\frac{\pi}{6}$	
6	$\int \frac{1}{\sqrt{2}} dx$	1
	$\int_0^{\frac{1}{\sqrt{2}}} \frac{dx}{\sqrt{2-x^2}} \text{ is equal to}$ $\pi \qquad \pi \qquad \pi$	
	$(a)\frac{\pi}{3}$ $(b)\frac{\pi}{6}$ $(c)\frac{\pi}{2}$ $(d)\frac{\pi}{4}$	
7	If the matrix A is both symmetric and skew symmetric, then	1
	(a) A is a diagonal matrix (b) A is a zero matrix (c) A is a scalar matrix (d) None of these	
8	If $P(B) = \frac{3}{5}$, $P\left(\frac{A}{B}\right) = \frac{1}{2}$ and $P(AUB) = \frac{4}{5}$, then $P(A \cap B)' = \frac{4}{5}$	1
	(a) 3/10 (b) 7/10 (c)2/5 (d) None of these	
9	The difference between Max. Z and Min. Z, where $Z = 5x - 3y$ and corner points of feasible	1
	solution region are (5,5), (0,10), (0,20), (15,15):	
10	(a) - 30 (b) 10 (c) 90 (d) 30	1
10	The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ satisfying the condition is	1
	(a) $y = xlogx + Cx$ (b) $y = logx + x + C$	
11	(c) $y = x \log x + x^2 + C$ (d) $y = x e^{x-1} + C$	1
11	Find the area of a parallelogram whose diagonals are given by $2\hat{i}$ and $5\hat{j}$	1
12	(a) 5 (b) 10 (c)20 (d)2.5 If lines $\frac{x-2}{3} = \frac{y-4}{-8} = \frac{z-6}{3k}$ and $\frac{x-1}{k} = \frac{y-3}{3} = \frac{z-5}{5}$ are mutually perpendicular then k is equal to	1
12	If the $\frac{1}{3} = \frac{1}{-8} = \frac{3}{3k}$ and $\frac{1}{k} = \frac{3}{3} = \frac{1}{5}$ are mutually perpendicular them k is equal to	
10	(a) $\frac{-3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) $\frac{-4}{3}$ The point(s) on the curve $y=x^2$, at which y- coordinate is changing 5 times as fast as x-	
13	The point(s) on the curve $y=x^2$, at which y- coordinate is changing 5 times as fast as x-coordinate is/are	1
	(a)(5,25) (b) $\left(\frac{5}{2}, \frac{25}{4}\right)$ (c) $\left(\frac{3}{2}, \frac{9}{4}\right)$ (d)(3,9)	
14	The value of $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ is	1
15	(a) $2\sqrt{tanx} + C$ (b) $2\sqrt{sinx} + C$ (c) $2\sqrt{secx} + C$ (d) $2tanx + C$ The equation of line passing through (-7, 8) and (5, 2) is	1
13		1
	(a) $x + 2y - 9 = 0$ (b) $5x - y - 27 = 0$ (c) $x - 2y + 9 = 0$ (d) $5x + y - 27 = 0$	
	(c) $x - 2y + 9 = 0$ (d) $5x + y - 27 = 0$	
16	The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ decreasing is	1
	(a) $[-2,-1]$ (b) $[-1,\infty]$ (c) $[-\infty,-2]$ (d) $[-1,1]$	
17		1
17	If $f(x) = \log(\log x)$, then derivative of $f(x)$ at $x = e$ is: (a) 1 (b) e (c) 0 (d) $1/e$	1
	$(a) 1 \qquad (b) b \qquad (a) 1/c$	

18	If $f(x) = \begin{cases} \frac{\sin x}{2x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is:	1
	(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 0	
	ASSERTION-REASON BASED QUESTIONS	
state answ (a) I (b) I ® A	estion numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two ments are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct ver from the options (A), (B), (C) and (D) as given below.) Both A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. is true but R is false. A is false but R is true.	et
19	Assertion (A): If a line makes an angle of 30°, 60°, 90° with the positive direction of	1
	x, y, z axes respectively, then its direction cosines are $<\frac{\sqrt{3}}{2}$, $\frac{1}{2}$, $0>$.	
	Reason (R) : Angle between the two lines $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$ and $\frac{x-1}{1} = \frac{y+3}{3} = \frac{z+5}{3}$ is 90° .	
20	Assertion(A) : The matrix $\begin{bmatrix} 8 & -1 & -1 \\ 3 & 1 & 2 \\ 1 & 4 & 7 \end{bmatrix}$ is singular.	1
	Reason(R) : The value of determinant of matrix A is zero.	
	SECTION B (This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)	
21	Find: $\int \frac{xe^x - e^x}{x^2} dx$	2
22	Find The value of $\cos^{-1}(\cos\frac{5\pi}{3}) + \sin^{-1}(\sin\frac{5\pi}{3})$.	2
	OR	
	Find the domain of $cos^{-1}[x]$. Where $[x]$ denotes the greatest integer function.	
23	On the occasion of Deepawali a child lightens the rocket which is moving in a straight line in such a way that its distance in meter from a fixed point on the line after t second is given by $3t^3 + 2t + 7$. Find the velocity at the end of 5 seconds.	2
24	$\left(\begin{array}{c} \frac{x^2}{x^2}, & 0 \le x < 1 \end{array}\right)$	2
	If the function $f(x) = \begin{cases} \frac{x^2}{a}, & 0 \le x < 1 \\ -1, & 1 \le x < \sqrt{2} \text{ is continuous in}[0,\infty), \text{ then find the value} \\ \frac{2b^2 - 4b}{x^2}, & \sqrt{2} \le x < \infty \end{cases}$	
	of a and b	
	OR	
25	Differentiate $log_7(log_e x)$ with respect to x If $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = kA$ then write the value of k	2
25	If $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = kA$ then write the value of k	2

	SECTION C	
	(This section comprises of 6 short answer type questions (SA) of 3 marks each)	
26	Find the general solution of differential equation: $(x + 2y^3) \frac{dy}{dx} = y$	3
	OR	
	Solve the differential equation: $x dy - y dx = \sqrt{x^2 - y^2} dx$.	
27	A die is thrown twice and the sum of the numbers appearing is observed to be 6. what is the	3
	conditional probability that the number 4 has appeared at least once.	
28	Maximize $Z=8x+9y$ subject to the constraints given below:	3
	$2x+3y \le 6$, $3x - 2y \le 6$, $y \le 1$ and $x, y \ge 0$	
29	Evaluate $\int \frac{x}{\sqrt{x+1}} dx$ OR	3
	YATI	
	Evaluate: $\int \frac{dx}{\sqrt{3x^2+6x+12}}$	
30	If $x = ae^{\theta}(sin\theta + cos \theta)$ and $y = ae^{\theta}(sin\theta - cos \theta)$, prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$.	3
31	$\int \cos 5x + \cos 4x$	3
	Evaluate $\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx$	
	OR	
	Evaluate $\int_0^{\pi} x log sinx \ dx$	
	SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each	1
32	Find the area of the region included between the parabola $2y = 3x^2$ and the line	5
	x - 2y + 10 = 0	_
33	An insect is crawling along the line $\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ and another insect is	5
	crawling along the line $\vec{r} = -4\hat{\imath} - \hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$. At what points on the lines should	
	they reach so that the distance between them is the shortest? Find the shortest possible	
	distance between them.	
	OR	
	The equations of motion of a rocket are : $x = 2t$, $y = -4t$, $z = 4t$, where the time t is given	
	in seconds, and the coordinates of a moving point in km. What is the path of the rocket? At	
	what distances will the rocket be from the starting point $O(0, 0, 0)$ and from the following	
34	line in 10 seconds? $\vec{r} = 20\hat{\imath} - 10\hat{\jmath} + 40\hat{k} + \mu(10\hat{\imath} - 20\hat{\jmath} + 10\hat{k})$. Prove that the function $f(x) = \frac{x}{x^2 + 1}$ such that $f: R \to [\frac{-1}{2}, \frac{1}{2}]$ is one- one and onto function.	5
	Find the images of 3 and 4 and pre-image of -1.	
	OR	
	Show that the relation R defined in the set of natural numbers is defined by (a,b)	
	R(c,d) if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$. Show that R is and equivalence relation. Also find the equivalence	
	class of (3,4).	

35 If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$, find AB Hence, solve the system of equations: $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 4$, $\frac{2}{x} + \frac{1}{y} - \frac{3}{z} = 0$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$

SECTION F

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

Solar Panels have to be installed carefully so that the tilt of the roof, and the direction to the sun, produce the largest possible electrical power in the solar panels. A surveyor uses his instrument to determine the coordinates of the four corners of a roof where solar panels are to be mounted. In the picture, suppose the points are labelled the roof corner nearest to the camera in units of meters P_1 (6,8,4), P_2 (21,8,4), P_3 (21,16,10) and P_4 (6,16,10).

- (i) What are the components to the two edge vectors defined by $\vec{A} = PV$ of $P_2 PV$ of P_1 and position vector $\vec{B} = PV$ of $P_4 PV$ of P_1 ? (where PV stands for position vector)
- (ii) What are the magnitudes of the vectors \overrightarrow{A} and \overrightarrow{B} .
- (iii) What are the components to the vector \vec{N} (where $|\vec{N}| = 150$), perpendicular to \vec{A} and \vec{B} and the surface of the roof?

ΛR

The sun is located along the unit vector $\vec{S} = \frac{1}{2}\hat{\imath} - 6/7\hat{\jmath} + 1/7 \hat{k}$. If the flow of solar energy is given by the vector $\vec{F} = 910 \vec{S}$ in units of watts/meter ², what is the dot product of vectors \vec{F} with \vec{N} .

37 $P(x) = -5x^2 + 125x + 37500$ is the total profit function of a company, where x is the production of the company.

Based on given information, answer the following questions:

(i) What will be the production when the profit is maximum?

OR

What will be the maximum profit?

- (ii) When the production is 2 units, what will be the profit of the company
- (iii) What will be production of the company when the profit is Rs. 38250

1 2

- (1) Write the probability of selection of Aditya.
- (2) Write the probability that the change took place due to appointment of Bhaskar.

Sample Paper 03

Marking scheme 2024-25

Class: XII Subject: Mathematics

		Se	ction: A (MC	CQs of 1 Mar	k each)		
1	(c)	6	(c)	11	(b)	16	(a)
2	(d)	7	(b)	12	(b)	17	(d)
3	(a)	8	(b)	13	(b)	18	(b)
4	(b)	9	(c)	14	(a)	19	(b)
5	(c)	10	(a)	15	(a)	20	(a)
			ection: B (VS	A of 2 Mark	s each)		
21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\frac{dx}{dx} dx = \int e^x ($,,				1
		$=\frac{1}{x}e^{x}$	$(\frac{5\pi}{3}) + \sin^{-1}())))))))))))))))))$				1
22	$= cos^{-1}$	$1(\cos(2\pi-\frac{5}{2}))$	$(\frac{5\pi}{3}) + \sin^{-1}()))))))))))))))))))$	$\sin(2\pi-\frac{5\pi}{3})$			1/2
			$in^{-1}(-\sin(\frac{\pi}{3}))$				
	$=\frac{\pi}{2}-\frac{\pi}{2}$	3	3	,			1 1/2
	$-\frac{1}{3}$ 3	•	\ D				72
) R		- [12)		1+1
22	. 24	$\frac{-1 \leq [x] \leq x}{3+3x+7}$	$1 \Rightarrow -1 \leq 1$	$x < z \Rightarrow x \epsilon$	[-1,2) .		
23	-	$\frac{3 + 2t + 7}{4}$	_				1/2
	Velocity	$y, v = \frac{dy}{dt} = 9$	$t^2 + 2$				$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
	Velocity	y after 5 seco	onds 227 metr	re/sec			1/2
24			ous in $[0,\infty)$,	the			1
	$\lim_{x \to 1} \frac{x^2}{a} =$	=-1					
	$x \to 1$ a	•					
	.⇒ a=-1	-					

	And $\lim_{x \to \sqrt{2}} \frac{2b^2 - 4b}{x^2} = -1$	
	$\Rightarrow \lim_{x \to \sqrt{2}} \frac{2b^2 - 4b}{2} = -1$	1
	$\Rightarrow 2b^2 - 4b = -2$ $\Rightarrow 2b^2 - 4b + 2 = 0$	
	$\Rightarrow 2(b-1)^2 = 0$	
	$ \begin{array}{l} \Rightarrow b = 1 \\ \mathbf{OR} \end{array} $	1
	$Y = log_7(log_e x)$	1
	$y = \frac{\log_e(\log_e x)}{\log_e 7}$	
	$\frac{dy}{dx} = \frac{1}{(\log_e 7)x(\log_e x)} = \frac{1}{x\log_e (7x)}$	1
25	$A^2 = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$	1
	$=4\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	
	$\begin{vmatrix} 1-2 & 2 \end{bmatrix}$	1
	K=4	
26	Section: C (SA of 3 Marks each) $\frac{dx}{dx} = 2x^{3} \text{ (I.D.F.)}$	1
20	$\frac{dx}{dy} - \frac{x}{y} = 2y^3 \text{ (L.D.E.)}$	1
	$I.F. = e^{\int -\frac{1}{y} dy} = \frac{1}{y}$	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$	
	$\frac{x}{y} = \frac{2}{3}y^3 + C$	1
	OR $dy = y + \sqrt{x^2 - y^2}$	
	$\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$	1
	Homogeneous diff. Equation Let $y = vx$ then	
	$v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$	1/2
	$\frac{dv}{\sqrt{1-v^2}} = \frac{dx}{x}$	1/2
	$\sin^{-1} v = \log x + C$	1
	$\sin^{-1}\frac{y}{x} = \log x + C$	1
27	Total events = 36 E=getting sum of numbers on both dice is 6	
	_ 5 5 com or nonnoon on oour dice to o	1

	F= number 4 had appeared at least once E= $\{(1,5)(5,1)(2,4)(4,2)(3,3)\}$ F= $\{(1,4)(2,4)(3.4)(4,1)(4,2)(4.3)(4,4)(4,5)(4,6)(5,4)(6,4)\}$ E \cap F= $\{(2,4)(4,2)\}$	2
	P(E∩F)=2/36;P(E)=11/36 P($\frac{E}{F}$)= $\frac{P(E)}{P(E\cap F)}$ =2/11	1
28	Correct feasible region Solving equations and correct corner points	1.5 1.5
29	Let $\sqrt{x} + 1 = t$ $\Rightarrow \sqrt{x} = t - 1$ $\Rightarrow x = (t - 1)^2$ $\Rightarrow dx = 2(t-1)$	1
	$\Rightarrow \int \frac{x}{\sqrt{x+1}} dx = \int \frac{2(t-1)^3}{t} dt$	1
	$= \int 2(t^2 - \frac{1}{t} - 3t + 3)dt$ $= 2(\frac{t^3}{3} - \log t - \frac{3t^2}{3} + 3t) + C$	1
	$=2\left[\frac{(\sqrt{x}-1)^3}{3} - \log(\sqrt{x}-1) - \frac{3(\sqrt{x}-1)^2}{2} + 3(\sqrt{x}-1)\right] + C$	
	OR	
	Sol. $I = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{x^2 + 2x + 4}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{(x+1)^2 + (\sqrt{3})^2}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{(t)^2 + (\sqrt{3})^2}}$	
	(put x+1=t => dx=dt) = $\frac{1}{\sqrt{3}} \log t + \sqrt{t^2 + 3} + c$ = $\frac{1}{\sqrt{3}} \log (x + 1) + \sqrt{x^2 + 2x + 4} + c$	
20		1
30	$x = ae^{\theta}(\sin\theta + \cos\theta) \Rightarrow \frac{dx}{d\theta} = 2ae^{\theta}\cos\theta \text{ and}$ $y = ae^{\theta}(\sin\theta - \cos\theta) \Rightarrow \frac{dy}{d\theta} = 2ae^{\theta}\sin\theta$	1
	$\frac{dy}{dx} = \frac{2ae^{\theta}\sin\theta}{2ae^{\theta}\cos\theta} \Rightarrow \frac{dy}{dx} = tan\theta (1)$	1
	and $\frac{x+y}{x-y} = \frac{ae^{\theta}(\sin\theta + \cos\theta) + ae^{\theta}(\sin\theta - \cos\theta)}{ae^{\theta}(\sin\theta + \cos\theta) - ae^{\theta}(\sin\theta - \cos\theta)} = tan\theta$	1
31	$I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} \ dx$	1

$= \int \frac{2\cos\frac{3\pi}{2}\cos\frac{2\pi}{2}}{3-4\cos^2\frac{2\pi}{2}} dx$ Divide and multiply by $\cos\frac{3x}{2}$ $I = \int \frac{2\cos\frac{3\pi}{2}\cos\frac{2\pi}{2}\cos\frac{3\pi}{2}}{3\cos\frac{3\pi}{2}} + \cos^2\frac{3\pi}{2} dx$ $= -\int \frac{2\cos\frac{3\pi}{2}\cos\frac{3\pi}{2}\cos\frac{3\pi}{2}}{\cos^{\frac{3\pi}{2}}} dx$ $= -\int (\cos^2x + \cos x) dx$ $= -\frac{\sin^2x}{2} - \sin x + C$ OR $Let I = \int_0^{\pi} x \log\sin x dx \dots (1)$ Using P4 $I = \int_0^{\pi} (\pi - x) \log\sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} \log\sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} \log\sin x dx$ $I = \pi \int_0^{\pi} \log\sin x dx$ $I = \pi \int_0^{\pi} \log\sin x dx$ I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x dx I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x dx I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x dx I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x dx I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x dx I = \pi \int_0^{\frac{3}{2}} \left{ log sin } x		$\frac{3\cos^{9}x\cos^{x}}{\cos^{2}x}$	İ
$I = \int \frac{2\cos \frac{3\pi}{2}\cos \frac{3\pi}{2} + \cos \frac{3\pi}{2}}{3\cos \frac{3\pi}{2}} dx$ $= -\int \frac{2\cos \frac{3\pi}{2}\cos \frac{3\pi}{2}}{\cos \frac{3\pi}{2}} dx$ $= -\int (\cos 2x + \cos x) dx$ $= -\frac{\sin 2x}{2} - \sin x + C$ OR $Let I = \int_{0}^{\pi} x \log \sin x dx \dots (1)$ Using P4 $I = \int_{0}^{\pi} (\pi - x) \log \sin x dx \dots (2)$ Adding 1 and 2 $2I = \pi \int_{0}^{\pi} l \log \sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_{0}^{\pi} l \log \sin x dx$ $I = \pi \int_{0}^{\pi} l \log \sin x dx$ $I = \pi \int_{0}^{\pi} l \log \sin x dx$ $I = \pi \left(-\frac{\pi}{2} \log 2 \right)$ $I = -\frac{\pi^{2}}{2} \log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2.6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $PQ = -\hat{6}i - 6\hat{j} - 3\hat{k}$		22	1
$= -\int \frac{2\cos\frac{3x}{2}\cos\frac{3x}{2}\cos\frac{3x}{2}}{\cos\frac{3x}{2}} dx$ $= -\int (\cos 2x + \cos x) dx$ $= -\frac{\sin 2x}{2} - \sin x + C$ OR Let $I = \int_0^{\pi} x \log \sin x dx$ (1) Using P4 $I = \int_0^{\pi} (\pi - x) \log \sin x dx$ (2) Adding 1 and 2 $21 = \pi \int_0^{\pi} \log \sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} \log \sin x dx$ $I = \pi \int_0^{\pi} \log \sin x dx$ $I = \pi \int_0^{\pi} \log \sin x dx$ $I = \pi \left(-\frac{\pi}{2} \log 2\right)$ $I = -\frac{\pi^2}{2} \log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ 1		2	
$= -\int (\cos 2x + \cos x) dx$ $= -\frac{\sin 2x}{2} - \sin x + C$ OR Let $I = \int_0^{\pi} x \log \sin x dx \dots (1)$ Using P4 $I = \int_0^{\pi} (\pi - x) \log \sin x dx \dots (2)$ Adding 1 and 2 $2I = \pi \int_0^{\pi} \log \sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} \log \sin x dx$ $I = \pi \int_0^{\pi} \log \sin x dx$ $I = \pi \left(-\frac{\pi}{2} \log 2\right)$ $I = -\frac{\pi^2}{2} \log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $P\hat{Q} = -6\hat{i} - 6\hat{j} - 3\hat{k}$		$I = \int \frac{\frac{2\cos\frac{2}{2}\cos\frac{2}{2}\cos\frac{2}{2}}{3\cos\frac{3x}{2} - 4\cos^{3}(\frac{3x}{2})}}{3\cos\frac{3x}{2} - 4\cos^{3}(\frac{3x}{2})} dx$	
$= -\int (\cos 2x + \cos x) dx$ $= -\frac{\sin 2x}{2} - \sin x + C$ OR Let $I = \int_0^{\pi} x \log \sin x dx \dots (1)$ Using P4 $I = \int_0^{\pi} (\pi - x) \log \sin x dx \dots (2)$ Adding 1 and 2 $2I = \pi \int_0^{\pi} \log \sin x dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} \log \sin x dx$ $I = \pi \int_0^{\pi} \log \sin x dx$ $I = \pi \left(-\frac{\pi}{2} \log 2\right)$ $I = -\frac{\pi^2}{2} \log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $P\hat{Q} = -6\hat{i} - 6\hat{j} - 3\hat{k}$		$=-\int \frac{2\cos\frac{9x}{2}\cos\frac{x}{2}\cos\frac{3x}{2}}{\cos\frac{9x}{2}} dx$	1
Let $I=\int_0^\pi x logsinx\ dx$ (1) Using P4 $I=\int_0^\pi (\pi-x))logsinx\ dx$ (2) Adding 1 and 2 $2I=\pi\int_0^\pi logsinx\ dx$ Using P6 $I=2\cdot\frac{\pi}{2}\frac{\pi}{0}\frac{\pi}{2}logsinx\ dx$ $I=\pi\int_0^{\pi} logsinx\ dx$ $I=\pi\left(-\frac{\pi}{2}log2\right)$ $I=-\frac{\pi^2}{2}log2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu-3\lambda=4 \text{ and } 17\mu-3\lambda=20 \Rightarrow \mu=1 \text{ and } \lambda=-1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath}+4\hat{\jmath}$ and $-\hat{\imath}-2\hat{\jmath}-3\hat{k}$ 1 $P\hat{Q}=-\hat{\jmath}_0-6\hat{\jmath}-3\hat{k}$		2	
Let $I = \int_0^\pi x logsinx \ dx$ (1) Using P4 $I = \int_0^\pi (\pi - x) logsinx \ dx$ (2) Adding 1 and 2 $2I = \pi \int_0^\pi logsinx \ dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} logsinx \ dx$ $I = \pi \int_0^{\pi} logsinx \ dx$ $I = \pi \left(-\frac{\pi}{2} log2\right)$ $I = -\frac{\pi^2}{2} log2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$ $\overline{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$=-\frac{\sin 2x}{2}-\sin x+C$	
Using P4 $I = \int_0^{\pi} (\pi - x) logsinx dx(2)$ Adding 1 and 2 $2I = \pi \int_0^{\pi} logsinx dx$ Using P6 $I = 2 \cdot \frac{\pi}{2} \int_0^{\pi} logsinx dx$ $I = \pi \int_0^{\pi} logsinx dx$ $I = \pi \int_0^{\pi} logsinx dx$ $I = \pi \left(-\frac{\pi}{2} log2\right)$ $I = -\frac{\pi^2}{2} log2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overline{PQ} = -\hat{0}i - 6\hat{j} - 3\hat{k}$		OR	
I = $\int_0^{\pi} (\pi - x) \log \sin x dx$ (2) Adding 1 and 2 $21 = \pi \int_0^{\pi} \log \sin x dx$ Using P6 I = $2 \cdot \frac{\pi}{2} \int_0^{\pi} \log \sin x dx$ I = $\pi \int_0^{\pi} \log \sin x dx$ I = $\pi \left(-\frac{\pi}{2} \log 2\right)$ I = $-\frac{\pi^2}{2} \log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ 1 1 1 1 1 1			
Adding 1 and 2 $2I=\pi \int_0^{\pi} log sinx dx$ Using P6 $I=2.\frac{\pi}{2} \int_0^{\pi} log sinx dx$ $I=\pi \int_0^{\pi} log sinx dx$ $I=\pi \left(-\frac{\pi}{2} log 2\right)$ $I=-\frac{\pi^2}{2} log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6) Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$ $\overline{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$		_~	1
$2I=\pi \int_0^{\pi} log sinx \ dx$ Using P6 $I=2.\frac{\pi}{2} \int_0^{\pi} log sinx \ dx$ $I=\pi \left(-\frac{\pi}{2} log 2\right)$ $I=-\frac{\pi^2}{2} log 2$ $I=-\frac{\pi^2}{2} log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overline{PQ} = -6\hat{i} - 6\hat{j} - 3\hat{k}$			
Using P6 $I=2.\frac{\pi}{2}\int_{0}^{\frac{\pi}{2}}logsinx\ dx$ $I=\pi\left(-\frac{\pi}{2}\log 2\right)$ $I=-\frac{\pi^{2}}{2}\log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$ $\overline{PQ} = -6i - 6\hat{\jmath} - 3\hat{k}$			
I=2. $\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} logsinx dx$ I= $\pi (-\frac{\pi}{2} \log 2)$ I= $-\frac{\pi^2}{2} \log 2$ Section: D (LA of 5 Marks each) Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $P\vec{Q} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1 1 1 2.5		, · · · · · · · · · · · · · · · · · · ·	
I= $\pi \int_0^{\frac{\pi}{2}} log sinx dx$ I= $\pi (-\frac{\pi}{2} log 2)$ I= $-\frac{\pi^2}{2} log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $P\vec{Q} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1 1 2.5		π	1
$I = \pi(-\frac{\pi}{2}\log 2)$ $I = -\frac{\pi^2}{2}\log 2$ Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overline{PQ} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1 1 1 1 1			
Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overline{PQ} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1 1 2 5			1
Section: D (LA of 5 Marks each) 32 Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer 33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ 1 $P\vec{Q} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1			
Graph of curve and line Intersecting points (-5/3, 25/6) and (2,6 Correct integral and limit Solving integral Actual answer $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overrightarrow{PQ} = -6\hat{i} - 6\hat{j} - 3\hat{k}$		2	
Intersecting points (-5/3 , 25/6) and (2,6 Correct integral and limit Solving integral Actual answer $ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	
Solving integral Actual answer $ \mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1 $ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $ \overrightarrow{PQ} = -\hat{6}i - 6\hat{j} - 3\hat{k} $ 2.5	32	Intersecting points (-5/3, 25/6) and (2,6	0.5
Actual answer 0.5 $\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$ $\overrightarrow{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ 1 1		Correct integral and mint	
33 $\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$ PV of the points at which they meet so that the distance between them is the shortest are $5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$ $\overrightarrow{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ 1 1		1-1.81(-1.20)3.4	
PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ 1 $\overrightarrow{PQ} = -6\hat{i} - 6\hat{j} - 3\hat{k}$			
PV of the points at which they meet so that the distance between them is the shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ 1 $\overrightarrow{PQ} = -6\hat{i} - 6\hat{j} - 3\hat{k}$ 1		*	
shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$ $\overrightarrow{PQ} = -\hat{6}i - 6\hat{j} - 3\hat{k}$ 1 1	33	$\mu - 3\lambda = 4$ and $17\mu - 3\lambda = 20 \Rightarrow \mu = 1$ and $\lambda = -1$	2.5
$\overrightarrow{PQ} = -\widehat{6}\imath - 6\widehat{\jmath} - 3\widehat{k}$			1
SI = 9 units		PQ = -6l - 6J - 3k $SD = 9 units$	0.5
OR			
Equation of Path $\frac{x}{a} = \frac{y}{a} = \frac{z}{4}$ d.r.s. 2,-4,4			
When t=10 sec , $x = 20$, $y = -40$, $z = 40$			
So the rocket will be at the point $P(20,-40,40)$, $OP = 60 \text{ km}$			1 I

	Distance = $10\sqrt{3}$	1 1.5
34	For one-one	
	$\det_{x_1} f(x_1) = f(x_2)$	
	$\frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1}$	
	$(x_1 - x_2)(1 - x_1x_2) = 0$	1
	$x_1 = x_2$ Therefore $f(y)$ is one one	1
	Therefore f(x) is one-one For onto	
	Let $y = \frac{x}{x^2 + 1}$	
	$\Rightarrow y(x^2+1)=x$	
	$\Rightarrow yx^2 - x + 1 = 0$	
	For real roots D≥ 0	
	$1-4y^2 \ge 0$	2
	$y \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ =Codomain. Therefore, function is onto also	2
	Images of 3 are $f(3)=3/10$ and $f(4)=4/17$	1
	Preimage of -1	
	$-1 = \frac{x}{x^2 + 1}$	1
	$x^2+x+1=0$ which gives non-real roots. Therefore, no preimage of -1 exists	
	\mathbf{OR}	
	(a,b) R(c,d) if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$	1
	For reflexive (a,b) $R(a,b)$	
	$\frac{1}{a} + \frac{1}{b} = \frac{1}{a} + \frac{1}{b}$	1
	For symmetric (c,d) R(a,b)	1
	$\frac{1}{a} + \frac{1}{d} = \frac{1}{c} + \frac{1}{b}$	
	For transitive	
	(a,b) $R(c,d)$ if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$ (1)	
	(a,b) $R(c,d)$ if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$ (1) Let $(c,d)R(e,f)$ if $\frac{1}{e} + \frac{1}{d} = \frac{1}{c} + \frac{1}{f}$ (2)	2
	Adding (1) and (2) we get	
	$\left \frac{1}{e} + \frac{1}{h} \right = \frac{1}{a} + \frac{1}{f} \dots$	
	Which implies (a,b) R (e,f)	
	Therefore, transitive also	
	Above relation is a n equivalence relation	
	Equivalence class of (3,4) is (4,3)	1
35		
	$AB = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	
	⇒ A B= 10 I	2
	$\Rightarrow A(\frac{B}{})=I$	
	$A(\frac{B}{10}) = I$ $A(\frac{B}{10}) = I$	
	$A = A \left(\frac{10}{10}\right)^{-1}$	

	$\rightarrow \Lambda \Lambda^{-1}$	
	$\begin{array}{ccc} . \Rightarrow AA & = 1 \\ \Rightarrow A^{-1} = \frac{B}{2} \end{array}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$.⇒AA^{-1}=I$ $.⇒A^{-1} = \frac{B}{10}$ $.⇒A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	1.5
	r1a	
	$ \begin{vmatrix} . \Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} \frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{2} \end{vmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} $	
	$\begin{vmatrix} .\Rightarrow \begin{vmatrix} 2 & 1 & -3 \end{vmatrix} \begin{vmatrix} \frac{1}{y} = 0 \end{vmatrix}$	
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	L_ZJ	1.5
	$\Rightarrow x = 1/2$; $y = -1$ and $z = 1$ Section: E (CS Based of 4Marks each)	
36	(i) 15, 0, 0; 0, 8, 6	1
30	(ii) Answer: $00\sqrt{15^2} = 15$ unit, & $\sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} =$	1
	10 unit	_
		2
	(iii) $\vec{N} = A \times \vec{B} \Rightarrow \vec{N} = \begin{vmatrix} i & j & k \\ 15 & 0 & 0 \\ 0 & 8 & 6 \end{vmatrix} = -15(6j-8k) = -90j+120k;$ 0, -	
	1000	
	90, 120 & Here $ \vec{N} = \sqrt{90^2 + 120^2} = \sqrt{22500} = 150$	
	OR	
	$\vec{F} = 910 (1/2\hat{\imath} - 6/7\hat{\jmath} + 1/7\hat{k}) = 455\hat{\imath} - 780\hat{\jmath} + 130\hat{k}.$	1
	The dot product is just $\vec{F} \cdot \vec{N} = 455 \times (0) - 780 \times (-90) + 130 \times 120 = 85,800$ watts.	
	From the definition of dot product: $\vec{F} \cdot \vec{N} = \vec{F} \vec{N} \cos\theta $ Then since $ \vec{F} = \vec{F} \vec{N} \cos\theta $	1
	910 and $ \vec{N} = 150$ and $\vec{F} \cdot \vec{N} = 85,800$.	
	710 and W = 130 and 1 W = 65,000.	2
37	(i) $P'(x) = -10x + 125 = 0$	
	x = 12.5	1
	OR	
	P(12.5) = Rs. 38281.25	
	(ii) $P(2) = 37730$	1
	(iii) $38250 = -5x^2 + 125x + 37500$	
	$5x^2 - 125x + 750 = 0$	2
	x=15 or x=10	
38	(1) 4/7	2
	(2) 4/15	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
L		

SAMPLE QESTION PAPER -04 (2024-25)

SUBJECT: MATHEMATICS (041)

Time: - 3 Hours CLASS: XII Max Marks: - 80

General Instructions:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculator is not allowed.

Q.	SECTION A	Marks
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the	
	correct option (Question 1 - Question 18):	
1	The number of all possible matrices of order 3×3 with each entry 0 or 1 is:	1
	(a) 27 (b) 18 (c) 81 (d) 512	
2	If $A = [a_{ij}]$ is a symmetric matrix of order n, then	1
	(a) $a_{ij} = 1/a_{ij}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j	
	(c) $a_{ij} = a_{ji}$ for all i, j (d) $a_{ij} = 0$ for all i, j	
3	Let A be a nonsingular square matrix of order 3×3 . Then $ adj $ A is equal to	1
	(a) $ A $ (b) $ A ^2$ (c) $ A ^3$ (d) $3 A $	
4	The area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq. units. The value of k will	1
	be	
	(a) 9 (b) 3 (c) -9 (d) 6	
5	If A and B are invertible matrices, then which of the following is not correct?	1
	(a) $adj A = A \cdot A^{-1}$ (b) $det(A)^{-1} = [det (A)]^{-1}$ (c) $(AB)^{-1} = B^{-1} A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$	
6	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at	1
	(a) 4 (b) -2 (c) 1 (d) 1.5	
7	Differential coefficient of sec $(\tan^{-1}x)$ w.r.t. x is	1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The rate of change of the area of a circle with respect to its radius r at $r = 6$ cm is	1
	(a) 10π (b) 12π (c) 8π (d) 11π	

9	On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$	1
	decreasing?	
	(a) $(0,1)$ (b) $(\frac{\pi}{2},\pi)$ (c) $(0,\frac{\pi}{2})$ (d) None of these	
10	$\int \frac{dx}{\sin^2 x \cos^2 x}$ is equal to	1
	$\int \frac{1}{\sin^2 x \cos^2 x} \cos^2 x \sin^2 x \cos^2 x$	
	(a) $\tan x + \cot x + c$ (b) $\sin x + \cos x + c$ (c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$	
1.1	(c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$	
11	The value of $\int_a^{-a} \sin^3 x dx$ is	1
10	(a) a (b) a/3 (c) 1 (d) 0 The degree of the differential equation	1
12	The degree of the differential equation	1
	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is}$	
	(a) 3 (b) 2 (c) 1 (d) not defined	
13	(a) 3 (b) 2 (c) 1 (d) not defined A homogeneous differential equation of the from $\frac{dy}{dx} = h\left(\frac{x}{y}\right)x$ can be solved by making the	1
	substitution.	
	(a) $y = vx$ (b) $v = yx$ (c) $x = vy$ (d) $x = v$ If is \vec{a} nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if	
14		1
	(a) $\lambda = 1$ (b) $\lambda = -1$ (c) $a = \lambda $ (d) $a = \frac{1}{ \lambda }$	
15	The coordinates of the foot of the perpendicular drawn from the point $(2, 5, 7)$ on the x-axis	1
	are given by	
1.0	(a) (2, 0, 0) (b) (0, 5, 0) (c) (0, 0, 7) (d) (0, 5, 7) The feasible solution for a LPP is shown	1
16	The feasible solution for a LPP is shown	1
	in given figure. Let Z=3x-4y be the (4, 10)	
	objective function. Minimum of Z occurs at (0, 8)	
	e) (00)	
	(6, 5)	
	f) (0,8)	
	g) (5,0)	
	h) (4,10) (0,0) (5,0)	
17	Region represented by $x \ge 0, y \ge 0$ is:	1
	(a) First quadrant (b) Second quadrant	
	(c) Third quadrant (d) Fourth quadrant	
18	If A and B are two events such that P(A)+P(B)- P(A and B)=P(A), then	1
	(b) $P(B/A) = 1$ (c) $P(A/B) = 0$ (d) $P(B/A) = 0$	
		1

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- Both A and R are true and R is the correct explanation of A. (d)
- Both A and R are true but R is not the correct explanation of A. (e)
- A is true but R is false. (f)
- A is false but R is true. (g)

(6)		
19	A: The Principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + 2 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is equal to $\frac{5\pi}{4}$	1
	R: If domain of $\cos^{-1} x$ and $\sin^{-1} x$ are respectively $(0, \pi)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	

A: The following straight lines are perpendicular to each other. 20

$$\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$$
 and $\frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$

R: Let line L-l passes through the point (x_1, y_1, z_1) and parallel to the vector whose direction ratios are a_1 , b_1 , and c_1 , and let line L- 2 passes through the point (x_2, y_2, z_2) and parallel to the vector whose direction ratios are a_2 , b_2 , and c_2 , Then the lines L-1 and L-2 are perpendicular if $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$ **SECTION B**

(This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)

21	Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b): a \le b^2\}$	2
	is transitive.	
22	Find $\frac{dy}{dx}$ of the function $y^x = x^y$	2
	OR	

Find the values of
$$k$$
 so that the function f is continuous at the indicated point
$$f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases} \quad \text{at } x = \pi$$

23	Evaluate: $\int \frac{x}{(x+1)(x+2)} dx$	2

Find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 16$. 24 2

Find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

SECTION C

(This section comprises of 6 short answer type questions (SA) of 3 marks each)

26	If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	3
27		3
	Evaluate: $\int \sqrt{1+3x-x^2} dx$	

1

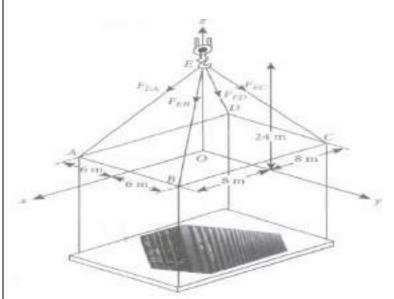
	OR	
	Evaluate: $\int_0^1 (xe^x + \sin\frac{\pi x}{4}) dx$	
28	Find the area of the region bounded by the parabola $y = x^2$ and $y = x $.	3
29	Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ OR	3
	Solve the differential equation $x \frac{dy}{dx} + 2y = x^2$; $(x \neq 0)$	
30	Solve the following Linear Programming Problem graphically:	3
	Maximize $Z = 5x + 2y$ subject to the constraints:	
	$x - 2y \le 2$, $3x + 2y \le 12$, $-3x + 2y \le 3$, $x \ge 0$, $y \ge 0$.	
31	Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find $E(X)$. OR The random variable X has a probability distribution $P(X)$ of the following form, where k is some number:	3
	$P(X) = \begin{cases} k, & \text{if } x = 0 \\ 2k, & \text{if } x = 1 \\ 3k, & \text{if } x = 2 \\ 0, & \text{otherwise} \end{cases}$ (a) Determine the value of k . (b) Find $P(X < 2)$, (c) Find $P(X \ge 2)$,	
	SECTION D	
32	(This section comprises of 4 long answer (LA) type questions of 5 marks each) Show that the function $f: P \to P$ defined by $f(x) = \frac{x}{2}$. $\forall x \in P$ is neither one one nor onto	5
32	Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in R$ is neither one-one nor onto. OR Let $f: W \to W$ be defined by $f(x) = \begin{cases} n - 1, & \text{if } n \text{ is odd} \\ n + 1, & \text{if } n \text{ is even} \end{cases}$. Show that f is one-one and onto .	3
33	Solve the following system of equations by matrix method. 3x - 2y + 3z = 8 2x + y - z = 1 4x - 3y + 2z = 4	5
34	Evaluate $\int \frac{\sqrt{x^2+1} \left[\log(x^2+1)-2\log x\right]}{x^4} dx$ OR Evaluate $\int_0^{\frac{\pi}{2}} \log \sin x \ dx$	5
35	Prove that the lines $x = py + q$, $z = ry + s$ and $x = p'y + q'$, $z = r'y + s'$ are perpendicular if $pp' + rr' + 1 = 0$.	5
	OR	
	Find the angle between the lines whose direction cosines are given by the	

equations l + m + n = 0, $l^2 + m^2 - n^2 = 0$. **SECTION E**

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

36 Read the following text and answer the following questions, on the basis of the same:

The relation between the heights of the plant (y in cm) with respect to exposure to sunlight is governed by the equation $y = 4x - \frac{1}{2}x^2$ where x is the number of days exposed to sunlight.


- (i) Find the rate of growth of the plant with respect to sunlight.
- (ii) Is this function satisfy the condition of second order derivative?
- What is the number of days it will take for the plant to grow to the maximum (iii) height?

OR

What is the maximum height of the plant?

1 1

2

Based on the above information, answer the following questions.

- (i) Find The vector of Direction Ratios of a Line \overrightarrow{ED}
- (ii) The length of the cable \overrightarrow{EB} is
- (iii) Find The sum of all vectors of Direction Ratios along the cables.

OR

Find The cartesian equation of line along \overrightarrow{EA}

1 1 2

One day, a sangeet mahotsav is to be organised in an open area of Rajasthan. In recent years, it has rained only 6 days each year. Also, it is given that when it actually rains, the weatherman correctly forecasts rain 80% of the time. When it doesn't rain, he incorrectly forecasts rain 20% of the time. If leap year is considered, then answer the following questions.

- (i) Find the probability that the weatherman predict rain.
- (ii) Find The probability that it will rain on the chosen day, if weatherman predict rain for that day,

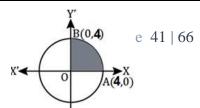
2

SAMPLE PAPER-04 (2024-25) CLASS XII MATHEMATICS BLUE PRINT

	Name of the Chapter	1 M (MCQ) Section A	2 M(VSA) Section B	3 M(SA) Section C	5 M(LA) Section D	4 M(Case Based) Section E	Total
Unit- I	Relation and Function				1(5)		
	Inverse Trigonometric Functions	1(1) AR	1(2)				3(8)
Unit - II	Matrices	2(2)					6(10)
	Determinant	3(3)			1(5)		0(10)
Unit - III	Continuity and Differentiability	2(2)	1(2)				
	Application of Derivative		1(2)			2(8)	
	Integrals	2(2)		3(9)			15(35)
	Application of Integrals				1(5)		
	Differential Equations	2(2)		1(3)			
Unit - IV	Vector Algebra	3(3)	1(2)				
	3-Dimensional Geometry	1(1) 1(1)AR	1(2)		1(5)		8(14)
Unit – V	Linear Programming Problems	2(2)		1(3)			3(5)
Unit -VI	Probability	1(1)		1(3)		1(4)	3(8)
	Total	20(20)	5(10)	6(18)	4(20)	3(12)	38(80)

Note: Numeral outside the bracket denote the number of questions and numeral inside the bracket denotes the marks.

AR: Assertive Reasoning Based.

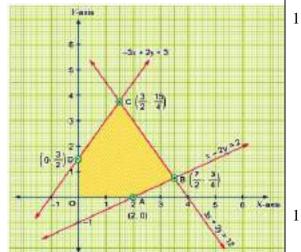

SAMPLE PAPER- 04 (2024-25)

SUBJECT: MATHEMATICS (041)

Time: - 3 Hours CLASS: XII Max Marks: - 80 MARKING SCHEME

Q.	MARKING SCHEME SECTION – A	Marks
No.	<u>BBC11014 11</u>	TVIALING
1	(d) 512	1
2	(c) $a_{ij} = a_{ji}$ for all i,j	1
3	(b) $ A ^2$	1
4	(b) 3	1
5	(d) $(A + B)^{-1} = B^{-1} + A^{-1}$	1
6	(d) 1.5	1
7	(a) $\frac{x}{\sqrt{1+x^2}}$	1
8	(b) 12 π	1
9	(d) None of these	1
10	(c) $\tan x - \cot x + c$	1
11	(d) 0	1
12	(d) not defined	1
13	(c) $x = vy$	1
14	(d) $a = \frac{1}{ \lambda }$	1
15	(a) (2, 0, 0)	1
16	(b) (0,8)	1
17	(a) First quadrant	1
18	(b) $P(A/B) = 1$	1
19	(c) A is true but R is false.	1
20	(a) Both A and R are true and R is the correct explanation of	1
	A. SECTION D	
	SECTION – B This section comprises of very short answer type-questions (VSA) of 2 marks each.	
21	$(3, 2), (2, 1.5) \in \mathbb{R}$	1
21	(as $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$)	1
	But, $3 > (1.5)^2 = 2.25$, $\therefore (3, 1.5) \notin \mathbb{R}$	
	∴ R is not transitive.	1
22	Taking logarithm on both sides	
	$x \log y = y \log x$	
	Differentiating both sides with respect to x	
	$\frac{x}{y}\frac{dy}{dx} + \log y = \frac{y}{x} + \log x \frac{dy}{dx}$	1
	$\left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \left(\frac{y}{x} - \log y\right)$	

	So $\frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$	1
	$\frac{1}{OR} dx \frac{x(x-y\log x)}{OR}$	
	$f(x)$ is continous at $x = \pi$	
	$\lim_{x \to \infty} f(x) = f(\pi)$	
	$\chi \rightarrow \pi$	1
	$\lim_{x \to \pi^{+}} f(x) = \lim_{x \to \pi^{-}} f(x) = k\pi + 1$ $\lim_{x \to \pi^{+}} f(x) = \lim_{x \to \pi^{-}} f(x) = k\pi + 1$	
	$\lim_{x\to\pi} \cos x = \lim_{x\to\pi} (kx+1) = k\pi+1$	
	$-1=k\pi+1$	1
	$k = \frac{-2}{-}$	1
	π	
23	Consider	
	x _ A _ B	
	$\frac{x}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$	
	We get	
	x = A(x + 2) + B(x + 1)	
	Now by equating the coefficients of x and constant term, we ge	
	A + B = I	
	2A + B = 0	
	By solving the equations we get	
	A = -1 and $B = 2$	1
	Substituting the values of A and B	
	x 1 , 2	
	$\frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)} + \frac{2}{(x+2)}$	
	By integrating both sides w.r.t x	
	$\int \frac{x}{(x+1)(x+2)} dx = \int \frac{-1}{(x+1)} + \frac{2}{(x+2)} dx$	
	So we get	
	$= -\log x + 1 + 2 \log x + 2 + c$	
	We can write it as	
	$= \log (x + 2)^2 - \log x + 1 + c$	1
	$= \log \frac{(x+2)^2}{(x+1)} + C$	1
24	the circle equation $x^2 + y^2 = 16$ (i)	
24	the circle equation $x^2 + y^2 = 16$ (1) From equation (i)	
	$x^2 + y^2 = 4^2$	
	$\Rightarrow y = \pm \sqrt{4^2 - x^2}$	
	Since sector AOBA lies in 1st Quadrant, the value of y is positive	1
	$y = \sqrt{4^2 - x^2}$	
	Area of Region AOBA $= \int_0^4 y dx = \int_0^4 \sqrt{4^2 - x^2} dx$	
	J ₀ J w J ₀ J w w	


	$\left[x^2\sqrt{4^2-x^2} + \frac{4^2}{2}\sin^{-1}\frac{x}{4}\right]^4$	
	$\begin{bmatrix} 1 & 2 & ^{4}J_{0} \\ = [0 + 8\sin^{-1}1 - 0 - 0] & = 8\frac{\pi}{2} & = 4\pi \end{bmatrix}$	
	Final answer:	1
	Therefore, required area $=4\pi$ square units.	1
	OR	
	the ellipse Equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$ (i)	
	from equation –(i)	
	$y = \frac{4}{5}\sqrt{5^2 - x^2}$	
	Area of Region AOBA	1
	$=\int_0^5 y dx$	1
	$=\frac{4}{5}\int_0^4 \sqrt{5^2-x^2} dx$	
	$\left \frac{4}{5} \left[x^2 \sqrt{5^2 - x^2} + \frac{5^2}{2} \sin^{-1} \frac{x}{5} \right] \right ^5$	
	$= \frac{4}{5} \left[0 + \frac{25}{2} \sin^{-1} 1 - 0 - 0 \right]^{10}$	
	$=\frac{4}{5} \cdot \frac{25}{2} \cdot \frac{\pi}{2}$	
	$=5\pi$	
	Final answer:	1
25	Therefore, required area $=5\pi$ square units. a,b,c are unit vectors	
23	$ \vec{a} = \vec{b} = \vec{c} = 1$	1
	$\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (given)	
	$ \vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 + 2(\vec{a}.\vec{b} + \vec{b}, \vec{c} + \vec{c}\vec{a}) = 0$	
	$1+1+1+2(\vec{a}.\vec{b}+\vec{b},\vec{c}+\vec{c}\vec{a})=0$	
	$ \vec{x} \cdot \vec{a} \cdot \vec{b} + \vec{b}, \vec{c} + \vec{c}\vec{a} = -\frac{3}{4}$	1
	SECTION C	
	(This section comprises of short answer type questions (SA) of 3 marks each)	
26	$y = 3\cos(\log x) + 4\sin(\log x)$	
	$\frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x)\frac{1}{x} + 4\cos(\log x)\frac{1}{x}$	
	V //	1
	$x \frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x) + 4\cos(\log x)$	
		1
	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -3\cos(\log x)\frac{1}{x} - 4\sin(\log x)\frac{1}{x}$	
	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -\{3\cos(\log x) + 4\sin(\log x)\}$	
	$\int_{-\infty}^{\infty} dx^2 dx = \int_{-\infty}^{\infty} \cos(\log x) + \sin(\log x)$	

	$x^2y_2 + xy_1 + y = 0$	1
27	<i>f</i>	
	Let $I=\int \sqrt{1+3x-x^2}dx$	
	$-\int \sqrt{1-\left(x^2-3x+rac{9}{4}-rac{9}{4} ight)}dx$	
	$-\int\sqrt{\left(1+rac{9}{4} ight)-\left(x-rac{3}{2} ight)^2}dx$	
	$=\int\sqrt{\left(rac{\sqrt{13}}{2} ight)^2-\left(x-rac{3}{2} ight)^2}dx$	1
	We know that, $\int \sqrt{a^2-x^2}dx=rac{x}{2}\sqrt{a^2-x^2}+rac{a^2}{2}\sin^{-1}\Bigl(rac{x}{a}\Bigr)+C$	1
	$I = \frac{x - \frac{3}{2}}{2} \sqrt{1 + 3x - x^2} + \frac{3}{8} \sin^{-1} \left(\frac{x - \frac{3}{2}}{\frac{\sqrt{13}}{2}} \right) + C$	
	$=\frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right)+C$	1
	OR	
	$\int_0^1 (xe^x) + \sin\left(\frac{\pi x}{4}\right) dx$	
	Here, we will do integration by parts.	
	$\int (xe^x) = xe^x - \int e^x dx$	1
	$\int (xe^x) = xe^x - e^x + c$	
	Now, $\int \sin\left(\frac{\pi x}{4}\right) dx = -\frac{4}{\pi} \cos\left(\frac{\pi x}{4}\right) + C$	1
	$\int_{0}^{1} (xe^{x}) + \sin\left(\frac{\pi x}{4}\right) dx = \left[xe^{x} - e^{x}\right]_{0}^{1} + \left[-\frac{4}{\pi}\cos\left(\frac{\pi x}{4}\right)\right]_{0}^{1}$	
	$=e-e-\left(0-e^0 ight)-rac{4}{\pi}\Big(rac{\cos\pi}{4}-\cos0\Big)$	
	$=1-rac{4}{\pi}\left(rac{1}{\sqrt{2}}-1 ight)$	
	$=1+rac{4}{\pi}\left(rac{\sqrt[4]{2}-1}{\sqrt{2}} ight)$	1
28	Curve $y = x^2$ is a parabola whose vertex is $(0, 0)$ and is symmetric about y-axis. Equation $y = x $ represents two lines When $x > 0$, then $y = x$	
	When $x < 0$, then $y = -x$ Intersection points of $y = x$ and parabola $y = x^2$ are O $(0, 0)$ and A $(1, 1)$. Intersection points of $y = -x$ and parabola $y = x^2$ and O $(0, 0)$ and B $(-1, 1)$.	

	The region bounded by lines $y = x$ and $y = -x$ and parabola $y = x^2$ is shown in the following figure. Required area = Area of BLOMA	1
	= 2 × Area of OMA	
	= 2 Area of $(\Delta OQA - \text{Area of } OMAQO)$	
	$= \int y \text{ (for line } y = x) dx$	
	$-\int y \text{ (for parabola } y = x^2 \text{) } dx$,
	$= 2 \int_0^1 x dx - 2 \int_0^1 x^2 dx$	1
	$= 2\left[\frac{x^2}{2}\right]_0^1 - 2\left[\frac{x^3}{3}\right]_0^1$	
	$=2\left[\frac{1}{2}-0\right]-2\left[\frac{1}{3}-0\right]$	
	$=2\times\frac{1}{2}-2\times\frac{1}{3}=1-\frac{2}{3}$	
	$=\frac{1}{3}$ sq. unit.	1
29	$\frac{dy}{dx} = \frac{x+y}{x}$ It is a homogenous differential equation,	
	Put $y = vx$ and $\frac{dy}{dx} = v + x \frac{dv}{dx}$	
	: the equation becomes,	1
	$v + x - \frac{dv}{dx} = \frac{x + vx}{x} = \frac{(1 + v)x}{x}$	1
	$ \begin{array}{cccc} dx & & & x \\ & & & & x \end{array} $	
	$x\frac{dv}{dx} = 1 + v - v = 1$	
		1
		1

	$dv = \frac{dx}{x}$	
	On integration	
	$\int dv = \int \frac{dx}{x}$	
	$v = \log x + \log c$	
	Now, replace	
	$v = \frac{y}{x}$	
	$\Rightarrow \frac{y}{x} = \log x + \log c$	
	$\frac{y}{x} = \log cx$ (or) $cx = e^{\frac{y}{x}}$	1
	$x = \frac{1}{c} \frac{e^{x}}{e^{x}}$ $x = k e^{x}, k = \frac{1}{c}$	
	OR	1
	We are given	
	$xrac{dy}{dx}+2y-x^2$	1
	$\Rightarrow rac{dy}{dx} + 2rac{y}{x} = x$	1
	This is of the form $rac{dy}{dx} + Py = Q$	
	,. I.F. $=e^{\int rac{2}{x}dx}=e^{2\log x}=e^{\log x^2}=x^2$	1
	General solution is:	
	$yx^2 = \int x \cdot x^2 dx + c$	
	$\Rightarrow yx^2 = \frac{x^4}{4} + c$	
30		1

CORNER	Z = 5x + 2y
POINTS	
(0,0)	0
(2,0)	10
$\left(\frac{7}{2},\frac{3}{4}\right)$	19
(2'4)	(MAXIMUM)
$\left(\frac{3}{2},\frac{15}{4}\right)$	15
$(0,\frac{3}{2})$	3

Hence, Z is maximum at $x = \frac{7}{2}$, $y = \frac{3}{4}$ and maximum value = 19

31 X can take values 2, 3, 4, 5, 6

(:1 cannot be greater than the other selected number)

X	2	3	4	5	6
P(X)	2	4	6	8	10
	30	30	30	30	30
X.P(X)	4	12	24	40	60
	30	30	30	30	30

Mean of X=E(X)=
$$\sum X P(X) = \frac{4+12+24+40+60}{30} = \frac{140}{30} = \frac{14}{3}$$

OR

The random variable X has a probability distribution P(X) of the following form, where kis some number:

X	0	1	2	OTHERWISE	
P(X)	K	2K	3K	0	

As Sum of all probabilities should be (a)

$$\Rightarrow$$
k+2k+3k=1 \Rightarrow k=1/6

(b)
$$P(x<2) = p(x=0) + p(x=1) = k+2k=3(\frac{1}{6}) = \frac{1}{2}$$

(c)
$$P(x \ge 2) = 3k + 0 = 3(\frac{1}{6}) + 0 = \frac{1}{2}$$

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

ONE -ONE 32

For $x_1, x_2 \in \mathbb{R}$, consider

$$f(x_1) = f(x_2)$$

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1}$$

1

1

1

1

1

	$\Rightarrow x_1 x_2^2 + x_1 = x_2 x_1^2 + x_2$	
	$ \Rightarrow x_1 x_2 + x_1 - x_2 x_1 + x_2 \Rightarrow x_1 x_2^2 + x_1 - x_2 x_1^2 - x_2 = 0 $	2.5
	$\Rightarrow x_1 x_2 + x_1 - x_2 x_1 - x_2 = 0$ $\Rightarrow x_1 x_2 (x_2 - x_1) - 1(x_2 - x_1) = 0$	2.3
	$\Rightarrow (x_1 x_2 - 1)(x_2 - x_1) = 0$ $\Rightarrow (x_1 x_2 - 1)(x_2 - x_1) = 0$	
	$\Rightarrow (x_1 x_2 - 1)(x_2 - x_1) = 0$ \Rightarrow (x_1 x_2 = 1) or (x_2 = x_1)	
	We note that there are point, x_1 and x_2 with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$, for instance, if	
	we take $x_1 = 2$ and $x_2 = \frac{1}{2}$	
	, then we have f $(x_1) = \frac{2}{5}$ and f $(x_2) = \frac{2}{5}$	
	But $2 \neq \frac{1}{2}$. Hence f is not one-one.	
	Onto:	
	Also, f is not onto for if so then for $1 \in \mathbb{R} \exists x \in \mathbb{R}$ such that $f(x) = 1$	2.5
	which gives $\frac{x}{x^2+1} = 1$. But there is no such x in the domain R , since the equation	
	which gives $x^2+1 = 1$. But there is no such x in the domain R , since the equation $x^2 - x + 1 = 0$ does not give any real value of x.	
	OR	
	The given function $f:W \rightarrow W$ is defined by,	
	$f(n) = \begin{cases} n - 1, & \text{if } n \text{ is odd} \\ n + 1, & \text{if } n \text{ is even} \end{cases}$	
	one one:-	
	Consider that $f(n)=f(m)$.	
	Case -1 If n is odd and m is even,	
	then,	
	n-1=m+1	
	\Rightarrow n-m=2	
	This cannot be possible.	
	Case :- 2 If both n and m are odd, then,	2.5
	n-1=m-1	2.3
	⇒n=m	
	Case-3 If both n and m are even,	
	then,	
	n+1=m+1	
	⇒n=m	
	Thus, f is one-one.	
	Onto	
	It can be observed that any odd number 2k+1 in the co-domain W is the image of 2k in	
	domain W. Also, any even number 2k in the co-domain W is the image of 2k+1 in domain	2.5
	W.	
	SO Range = co-domain	
	Thus, f is onto.	
33	3x - 2y + 3z = 8	
	2x + y - z = 1	
	4x - 3y + 2z = 4	

$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, and B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$ We see that $ A = 3(2-3) + 2(4+4) + 3(-6-4) = -17 \neq 0$ Hence, A is non-singular and so its inverse exists. Now $A_{11} = -1, A_{12} = -8, A_{13} = -10$ $A_{21} = -5, A_{22} = -6, A_{23} = 1$ $A_{31} = -1, A_{32} = 9, A_{33} = 7$ Therefore $A^{-1} = -\frac{1}{17} \begin{bmatrix} -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$ $So \ X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 1 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -51 \end{bmatrix} \begin{bmatrix} 1 \\ -31 \\ -10 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -31 \\ -51 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. 34 $\int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{x^2 + 1}{x^2} \log(x^2 + 1) dx$ $- \int \frac{x^2 + 1}{x^3} \log(x^2 + 1) dx$ $- \int \frac{x^2 + 1}{x^3} \log(x^2 + 1) dx$ $- \int \frac{x^2 + 1}{x^3} \log(x^2 + 1) dx$ $- \int \frac{x^2 + 1}{x^3} \log(x^2 + 1) dx$ $- \int \frac{x^3 + 1}{x^3} \log(x^3 + 1) dx$ $- \int \frac{x^3 + 1}{x^3} \log(x^3 + 1) dx$ $- \int \frac{x^3 + 1}{x^3} \log(x^3 + 1) dx$ $- \int x^3 + $		The system of equations can be written in the form $AX = B$, where					
We see that $ A = 3 (2-3) + 2(4+4) + 3 (-6-4) = -17 \neq 0$ Hence, A is non-singular and so its inverse exists. Now $A_{11} = -1$, $A_{12} = -8$, $A_{13} = -10$ $A_{31} = -5$, $A_{22} = -6$, $A_{23} = 1$ $A_{31} = -1$, $A_{32} = 9$, $A_{33} = 7$ Therefore $A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ -10 & 1 & 7 \end{bmatrix}$ So $X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} -17 \\ -34 & -12 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -8 & -6 & 9 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -17 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -18 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -18 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -18 \\ -8 & -8 & -8 \end{bmatrix} \begin{bmatrix} -18 \\ -8 & -8 & -8 \end{bmatrix} $		$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, and B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$	1				
Hence, A is non-singular and so its inverse exists. Now $A_{11} = -1, A_{12} = -8, A_{13} = -10$ $A_{21} = -5, A_{22} = 6, A_{23} = 1$ $A_{31} = -1, A_{32} = 9, A_{33} = 7$ Therefore $A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ 1 & -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 1 \end{bmatrix}$ $So \ X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ 1 & -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -8 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. 34 $\int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log(x^2 + 1)} dx$ $= \int \int \frac{x^2 + 1}{x^2} \log(x^2 + 1) dx$ $= \int \int \frac{x^2 + 1}{x^2} \log(x^2 + 1) dx$ $= \int \int \int \frac{x^2 + 1}{x^2} \log(x^2 + 1) dx$ $= \int \int \int \int \frac{x^2 + 1}{x^2} \log(x^2 + 1) dx$ $= \int							
$A_{11} = -1, A_{12} = -8, A_{13} = -10$ $A_{21} = -5, A_{22} = -6, A_{23} = 1$ $A_{31} = -1, A_{32} = 9, A_{33} = 7$ $Therefore A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 1 \end{bmatrix} So \ X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -17 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 2 \\ 3 \end{bmatrix} Hence \ x = 1, \ y = 2 \ and \ z = 3. 34 \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx - \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx = \int \sqrt{\frac{x^2 + 1}{x^2}} \log\left(\frac{x^2 + 1}{x^2}\right) dx = \int \sqrt{\frac{x^2 + 1}{x^2}} \log\left(\frac{x^2 + 1}{x^2}\right) dx = \int \frac{x^3}{x^3} dx = 2t dt = \int t. \log t^2 \left(-t\right) dt = -\int t. \log t^2 \left(-t\right) dt = -\int t. \log t^2 \left(-t\right) dt = -\int t. \log t^2 \left(-t\right) dt = -\left[\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C -\frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C$		$ A = 3(2-3) + 2(4+4) + 3(-6-4) = -17 \neq 0$					
$A_{21} = -5, A_{22} = -6, A_{23} = 1$ $A_{31} = -1, A_{32} = 9, A_{33} = 7$ Therefore $A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$ $So X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -34 \\ -34 \\ -51 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $Hence x = 1, y = 2 \text{ and } z = 3.$ 34 $\int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4}$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \frac{x^4}{x^2} dx = 2tdt$ $= \int t. \log t^2(-t)dt$ $= -\int \frac{1}{3}t^3 \log t^2 + \frac{2}{3}t^3 + C \Rightarrow -\frac{1}{3}t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{1}{2}} \left[\frac{x^2 + 1}{x^2}\right]$			2				
$A_{31} = -1, A_{32} = 9, A_{33} = 7$ $Therefore A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} -1 & -5 & -1 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ $So X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$ $Hence x = 1, y = 2 \text{ and } z = 3.$ $34 \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \int \frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int \int \int \ln g t^2 - t dt$ $- \int \int t \cdot \log t^2 (-t) dt$ $= - \int \int t \cdot \log t^2 (-t) dt$ $= - \int \int \int \ln g t^2 + \frac{1}{3} \int \int \int \log t^2 - \frac{2}{3} dt + C$ $- \frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right] \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C$ $- \frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right] \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3} \right] + C$ $- \ln \left[\int \int_0^{\pi} \log \sin x dx - 0 \right]$ 1 Let $I = \int_0^{\pi} \log \sin x dx - 0 = 0$			3				
$X = \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. $1 = \begin{bmatrix} \sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} \\ x^4 = \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int t \cdot \log t \cdot \left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int t \cdot \log t^2 \left(-t\right) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $= -\frac{1}{3} \left[t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $= -\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $= OR$ Let $I = \int_0^{\pi/2} \log \sin x dx - \infty(i)$							
$X = \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. $1 = \begin{bmatrix} \sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} \\ x^4 = \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int t \cdot \log t \cdot \left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int t \cdot \log t^2 \left(-t\right) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $= -\frac{1}{3} \left[t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $= -\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $= OR$ Let $I = \int_0^{\pi/2} \log \sin x dx - \infty(i)$							
$X = \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. $1 = \begin{bmatrix} \sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} \\ x^4 = \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int t \cdot \log t \cdot \left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int t \cdot \log t^2 \left(-t\right) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $= -\frac{1}{3} \left[t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $= -\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $= OR$ Let $I = \int_0^{\pi/2} \log \sin x dx - \infty(i)$		Therefore $A^{-1} = -\frac{1}{17} \begin{vmatrix} -8 & -6 & 9 \\ -10 & 1 & 7 \end{vmatrix}$					
$X = \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. $1 = \begin{bmatrix} \sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} \\ x^4 = \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int t \cdot \log t \cdot \left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int t \cdot \log t^2 \left(-t\right) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $= -\frac{1}{3} \left[t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $= -\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $= OR$ Let $I = \int_0^{\pi/2} \log \sin x dx - \infty(i)$		$\begin{bmatrix} -1 & -5 & -1 \end{bmatrix} \begin{bmatrix} 8 \end{bmatrix}$	1				
$X = \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Hence $x = 1, y = 2$ and $z = 3$. $1 = \begin{bmatrix} \sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} \\ x^4 = \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx$ $= \int t \cdot \log t \cdot \left(\frac{x^2 + 1}{x^2}\right) \times \frac{1}{x^3} dx$ $= \int t \cdot \log t^2 \left(-t\right) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $= -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $= -\frac{1}{3} \left[t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $= -\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ $= OR$ Let $I = \int_0^{\pi/2} \log \sin x dx - \infty(i)$		So $X = A^{-1}B = -\frac{-}{17} \begin{vmatrix} -8 & -6 & 9 \\ -10 & 1 & 7 \end{vmatrix} \begin{vmatrix} 1 \\ 4 \end{vmatrix}$					
Hence $x = 1, y = 2$ and $z = 3$. $ \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx $ $ - \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{x^4} dx $ $ - \int \frac{\sqrt{x^2 + 1} \log(\frac{x^2 + 1}{x^2})}{x^4} dx $ $ = \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx $ $ = \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx $ $ = \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx $ $ = \int \sqrt{\frac{x^2 + 1}{x^2} \log\left(\frac{x^2 + 1}{x^2}\right)} \times \frac{1}{x^3} dx $ $ = \int \int \frac{x^2 + 1}{x^3} dx = t dt $ $ - \int							
$ \int \frac{\sqrt{x^2+1} \left[\log(x^2+1) - 2\log x \right]}{x^4} dx \\ - \int \frac{\sqrt{x^2+1} \log(x^2+1) - 2\log x}{x^4} dx \\ - \int \frac{\sqrt{x^2+1} \log(\frac{x^2+1}{x^2})}{x^4} dx \\ = \int \sqrt{\frac{x^2+1}{x^2} \log\left(\frac{x^2+1}{x^2}\right)} \times \frac{1}{x^3} dx \\ = \int \sqrt{\frac{x^2+1}{x^2}} \log\left(\frac{x^2+1}{x^2}\right) \times \frac{1}{x^3} dx \\ = \int \int \frac{x^2+1}{x^2} \log\left(\frac{x^2+1}{x^2}\right) \times \frac{1}{x^3} dx \\ = \int \int \frac{x^2+1}{x^2} = t, \frac{x^2+1}{x^2} = t^2 \\ - \frac{2}{x^3} dx = 2t dt \\ \frac{1}{x^3} dx = -t dt \\ - \int t. \log t^2 (-t) dt \\ = -\int t2 \times \log(t^2) \times dt \\\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \\ - OR $ Let $I = \int_0^{\pi} \log \sin x dx - c(i)$		$\begin{bmatrix} x = y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{34}{17} & -\frac{34}{51} & \frac{2}{3} \\ -\frac{51}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$	1				
$\int \frac{\sqrt{x^2 + 1} [\log(x^2 + 1) - 2 \log x]}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \log(\frac{x^2 + 1}{x^2})}{x^4} dx$ $- \int \frac{\sqrt{x^2 + 1} \log(\frac{x^2 + 1}{x^2})}{x^4} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2}} \log(\frac{x^2 + 1}{x^2}) \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2}} \log(\frac{x^2 + 1}{x^2}) \times \frac{1}{x^3} dx$ $= \int \sqrt{\frac{x^2 + 1}{x^2}} = t, \frac{x^2 + 1}{x^2} = t^2$ $- \frac{2}{x^3} dx = 2t dt$ $\frac{1}{x^3} dx = -t dt$ $- \int t. \log t^2(-t) dt$ $= -\int t2 \times \log(t^2) \times dt$ $- \left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ OR 1 Let $I = \int_0^\pi \log \sin x dx - c(i)$							
$-\int \frac{\sqrt{x^2 + 1} [\log(x^2 + 1) - 2 \log x]}{x^4} dx$ $-\int \frac{\sqrt{x^2 + 1} \log(\frac{x^2 + 1}{x^2})}{x^4} dx$ $=\int \sqrt{\frac{x^2 + 1}{x^2}} \log(\frac{x^2 + 1}{x^2}) \times \frac{1}{x^3} dx$ put $\int \sqrt{\frac{x^2 + 1}{x^2}} = t, \frac{x^2 + 1}{x^2} = t^2$ $-\frac{2}{x^3} dx = 2t dt$ $\frac{1}{x^3} dx = -t dt$ $-\int t \cdot \log t^2 (-t) dt$ $= -\int t \cdot 2 \times \log(t^2) \times dt$ $-\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $-\left[\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C$ $-\frac{1}{3} \left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ OR Let $I = \int_0^{\pi} \log \sin x dx - c(i)$	34	$\int \frac{\sqrt{x^2+1} \left[\log(x^2+1) - 2 \log x \right]}{1 + 1 + 1}$					
$ \begin{aligned} & \text{put} \int \sqrt{\frac{x^2+1}{x^2}} = t, \frac{x^2+1}{x^2} = t^2 \\ & -\frac{2}{x^3} dx = 2t dt \\ & \frac{1}{x^3} dx = -t dt \\ & -\int t. \log t^2 (-t) dt \\ & = -\int t2 \times \log(t^2) \times dt \\ & -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\ & -\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\ & -\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \end{aligned} $ $ \begin{aligned} & \text{OR} \end{aligned} $ $ \begin{aligned} & \text{Let } I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx & \cdots \text{(i)} \end{aligned} $		$J = \chi^4$					
$ \begin{aligned} & \text{put} \int \sqrt{\frac{x^2+1}{x^2}} = t, \frac{x^2+1}{x^2} = t^2 \\ & -\frac{2}{x^3} dx = 2t dt \\ & \frac{1}{x^3} dx = -t dt \\ & -\int t. \log t^2 (-t) dt \\ & = -\int t2 \times \log(t^2) \times dt \\ & -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\ & -\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\ & -\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \end{aligned} $ $ \begin{aligned} & \text{OR} \end{aligned} $ $ \begin{aligned} & \text{Let } I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx & \cdots \text{(i)} \end{aligned} $		$\int \sqrt{x^2+1} [\log(x^2+1)-2\log x]$					
$ \begin{aligned} & \text{put} \int \sqrt{\frac{x^2+1}{x^2}} = t, \frac{x^2+1}{x^2} = t^2 \\ & -\frac{2}{x^3} dx = 2t dt \\ & \frac{1}{x^3} dx = -t dt \\ & -\int t. \log t^2 (-t) dt \\ & = -\int t2 \times \log(t^2) \times dt \\ & -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\ & -\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\ & -\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \end{aligned} $ $ \begin{aligned} & \text{OR} \end{aligned} $ $ \begin{aligned} & \text{Let } I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx & \cdots \text{(i)} \end{aligned} $		$-\int \frac{x^4}{x^2+1\log(\frac{x^2+1}{x^2+1})}$					
$ \begin{aligned} & \text{put} \int \sqrt{\frac{x^2+1}{x^2}} = t, \frac{x^2+1}{x^2} = t^2 \\ & -\frac{2}{x^3} dx = 2t dt \\ & \frac{1}{x^3} dx = -t dt \\ & -\int t. \log t^2 (-t) dt \\ & = -\int t2 \times \log(t^2) \times dt \\ & -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\ & -\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\ & -\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \end{aligned} $ $ \begin{aligned} & \text{OR} \end{aligned} $ $ \begin{aligned} & \text{Let } I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx & \cdots \text{(i)} \end{aligned} $		$-\int \frac{1}{x^4} dx$					
$ \begin{aligned} & \text{put} \int \sqrt{\frac{x^2+1}{x^2}} = t, \frac{x^2+1}{x^2} = t^2 \\ & -\frac{2}{x^3} dx = 2t dt \\ & \frac{1}{x^3} dx = -t dt \\ & -\int t. \log t^2 (-t) dt \\ & = -\int t2 \times \log(t^2) \times dt \\ & -\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C \\ & -\frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \Rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3}\right] + C \\ & -\frac{1}{3} \left[\frac{x^2+1}{x^2}\right]^{\frac{3}{2}} \left[\log\left(\frac{x^2+1}{x^2}\right) - \frac{2}{3}\right] + C \end{aligned} $ $ \begin{aligned} & \text{OR} \end{aligned} $ $ \begin{aligned} & \text{Let } I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx & \cdots \text{(i)} \end{aligned} $		$=\int\sqrt{rac{x^2+1}{x^2}}\log\Bigl(rac{x^2+1}{x^2}\Bigr) imesrac{1}{x^3}dx$					
$-\frac{2}{x^3}dx = 2tdt$ $\frac{1}{x^3}dx = -tdt$ $-\int t \cdot \log t^2(-t)dt$ $= -\int t2 \times \log(t^2) \times dt$ $-\left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3}\right] + C$ $-\left[\frac{1}{3}t^3\log t^2 + \frac{2}{3}t^3 + C \Rightarrow -\frac{1}{3}t^3\left[\log t^2 - \frac{2}{3}\right] + C$ $-\frac{1}{3}\left[\frac{x^2 + 1}{x^2}\right]^{\frac{3}{2}}\left[\log\left(\frac{x^2 + 1}{x^2}\right) - \frac{2}{3}\right] + C$ OR 1 Let $I = \int_0^{\frac{\pi}{2}} \log \sin x dx(i)$		put $\int \sqrt{rac{x^2+1}{x^2}} = t$, $rac{x^2+1}{x^2} = t^2$					
$ \frac{1}{x^3} dx = -t dt - \int t \cdot \log t^2 (-t) dt = - \int t^2 \times \log(t^2) \times dt \left[\log t^2 \times \frac{t^3}{3} - \frac{2}{3} \times \frac{t^3}{3} \right] + C \frac{1}{3} t^3 \log t^2 + \frac{2}{3} t^3 + C \rightarrow -\frac{1}{3} t^3 \left[\log t^2 - \frac{2}{3} \right] + C \frac{1}{3} \left[\frac{x^2 + 1}{x^2} \right]^{\frac{3}{2}} \left[\log \left(\frac{x^2 + 1}{x^2} \right) - \frac{2}{3} \right] + C $ $ OR $ Let $I = \int_0^{\pi/2} \log \sin x dx$ (i)		$-\frac{2}{3} dx = 2tdt$					
$-\int t \cdot \log t^{2}(-t)dt$ $= -\int t^{2} \times \log(t^{2}) \times dt$ $- \left[\log t^{2} \times \frac{t^{3}}{3} - \frac{2}{3} \times \frac{t^{3}}{3}\right] + C$ $\frac{1}{3}t^{3}\log t^{2} + \frac{2}{3}t^{3} + C \Rightarrow -\frac{1}{3}t^{3}\left[\log t^{2} - \frac{2}{3}\right] + C$ $\frac{1}{3}\left[\frac{x^{2} + 1}{x^{2}}\right]^{\frac{3}{2}}\left[\log\left(\frac{x^{2} + 1}{x^{2}}\right) - \frac{2}{3}\right] + C$ OR 1 Let $I = \int_{0}^{\pi} \log \sin x dx$ (i)		1 ATT					
$- \left[\log t^{2} \times \frac{t^{3}}{3} - \frac{2}{3} \times \frac{t^{3}}{3} \right] + C$ $ \frac{1}{3} t^{3} \log t^{2} + \frac{2}{3} t^{3} + C \Rightarrow - \frac{1}{3} t^{3} \left[\log t^{2} - \frac{2}{3} \right] + C$ $ \frac{1}{3} \left[\frac{x^{2} + 1}{x^{2}} \right]^{\frac{3}{2}} \left[\log \left(\frac{x^{2} + 1}{x^{2}} \right) - \frac{2}{3} \right] + C$ OR 1 Let $I = \int_{0}^{\frac{\pi}{2}} \log \sin x dx(i)$							
$ \frac{1}{3}t^{3}\log t^{2} + \frac{2}{3}t^{3} + C \rightarrow -\frac{1}{3}t^{3}\left[\log t^{2} - \frac{2}{3}\right] + C$ $ \frac{1}{3}\left[\frac{x^{2} + 1}{x^{2}}\right]^{\frac{3}{2}}\left[\log\left(\frac{x^{2} + 1}{x^{2}}\right) - \frac{2}{3}\right] + C$ OR 1 Let $I = \int_{0}^{\frac{\pi}{2}}\log\sin x \ dx(i)$		$=-\int t2 imes \log(t^2) imes dt$					
$ \frac{1}{3}t^{3}\log t^{2} + \frac{2}{3}t^{3} + C \rightarrow -\frac{1}{3}t^{3}\left[\log t^{2} - \frac{2}{3}\right] + C$ $ \frac{1}{3}\left[\frac{x^{2} + 1}{x^{2}}\right]^{\frac{3}{2}}\left[\log\left(\frac{x^{2} + 1}{x^{2}}\right) - \frac{2}{3}\right] + C$ OR 1 Let $I = \int_{0}^{\frac{\pi}{2}}\log\sin x \ dx(i)$		$=-\left[\log t^2 imes rac{t^3}{3} - rac{2}{3} imes rac{t^3}{3} ight] + C$					
$-\frac{1}{3} \left[\frac{x^{2}+1}{x^{2}} \right]^{3} \left[\log \left(\frac{x^{2}+1}{x^{2}} \right) - \frac{2}{3} \right] + C$ OR $Let I = \int_{0}^{\frac{\pi}{2}} \log \sin x dx(i)$		$=-rac{1}{3}t^3{\log t}^2+rac{2}{3}t^3+C ightarrow -rac{1}{3}t^3{\left[\log t^2-rac{2}{3} ight]}+C$					
Let $I = \int_0^{\frac{\pi}{2}} \log \sin x dx$ (i)			1				
Let $I = \int_0^{\frac{\pi}{2}} \log \sin x dx(i)$		OR	1				
		π	1				
			1				

	π π	1
	$I = \int_0^{\frac{\pi}{2}} \log \sin(\frac{\pi}{2} - x) \ dx = \int_0^{\frac{\pi}{2}} \log \cos x \ dx (ii)$	1
	Adding the two values of I, we get	
	$2I = \int_0^{\frac{\pi}{2}} (\log \sin x + \log \cos x) dx$	
	$2I = \int_0^{\frac{\pi}{2}} (\log \frac{\sin 2x}{2}) dx$	
	π π	
	$2I = \int_{-\infty}^{\frac{\pi}{2}} \log \sin 2x dx - \int_{-\infty}^{\frac{\pi}{2}} \log 2 dx$	
	$\int_{0}^{10} \log \sin 2x dx = \int_{0}^{10} \log 2 dx$	
	Put $2x = t$ in the first integral. Then $2 dx = dt$, when $x = 0$, $t = 0$ and when $x = \frac{\pi}{2}$, $t = \pi$	1
	Therefore	
	$2I = \frac{1}{2} \int_{0}^{\pi} \log \sin t dt - \frac{\pi}{2} \log 2$	
	$\frac{21}{2} = 2 \int_{0}^{10} \log 3Mt dt = 2 \log 2$	
	Now in the first integral we use P-6 π	1
	$\frac{\Xi}{2}$	
	$2I = \frac{2}{2} \int \log \sin t dt - \frac{\pi}{2} \log 2$	
	Now in the first integral we use P-0	1
	$\frac{\pi}{2}$	1
	$2I = \int \log \sin x dx - \frac{\pi}{2} \log 2$	
	π	1
	$2I = I - \frac{\pi}{2} \log 2$	1
	$I = -\frac{\pi}{2} \log 2$	
	L	1
35	We have, $x = py+q \Rightarrow y = \frac{x-q}{p}$ (i)	
	And $z = ry + s$ \Rightarrow $y = \frac{z - s}{r}$ (ii)	
	[Using Eqs. (i) and (ii)]	1.5
	$\Rightarrow \frac{x-q}{p} = \frac{y}{1} = \frac{z-s}{r} \dots (iii)$	
	Similarly,	1.5
	$\Rightarrow \frac{x-q'}{p'} = \frac{y}{1} = \frac{z-s'}{r'} \dots (iv)$	1.5
	if these given lines are perpendicular to each other, then	
	$\Rightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$	1
	$\Rightarrow pp'+1+rr'=0$ $\Rightarrow pp'+rr'+1=0$	1
	Which is the required condition.	
	OR	
	Given eqs. $l + m + n = 0$ (i)	

	$l^2 + m^2 - n^2 = 0$ (ii)	
	Eliminating n from both the equations, we have	
	$\Rightarrow l^2 + m^2 - (-l - m)^2 = 0$	
	$\Rightarrow l^2 + m^2 - l^2 - m^2 + 2lm = 0$	1
	$\Rightarrow 2lm = 0$	
	$\Rightarrow l = 0 \text{ or } m = 0$	
	Now when $l=0$	
	Then by eq. (i) $m + n = 0$	
	$\Rightarrow l=0 \text{ or } m=-n$	1
	\Rightarrow so dr of 1 st line $(0, -n, n)$	
	Now when $m=0$	
	Then by eq. (i) $1 + n = 0$	
	$\Rightarrow m = 0 \text{ or } l = -n$	1
	\Rightarrow so dr of 2 nd line $(-n, 0, n)$	
	Thus, Dr's two lines are proportional to $(0, -n, n)$ and $(-n, 0, n)$ i.e., $(0, -1, 1)$ and	
	(-1,0,1).	
	So, the vectors parallel to these given lines are $\vec{a} = -\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{k}$	
	$now \cos \theta = \frac{\vec{a}\vec{b}}{ \vec{a} \vec{b} } \implies \cos \theta = \frac{1}{ \sqrt{2} \sqrt{2} } = \frac{1}{2} \implies \theta = \pi/3$	2
	SECTION E	
36	$(iv)y = 4x - \frac{1}{2}x^2$	
		1
	$=\frac{dy}{dx}=4-x$	1
	(iv) yes	2
	(v) 4	
	OR 8	
37	(i) D is (-8, -6, 0) and that of E is (0, 0, 24)	
	$\therefore \text{ Vector } \overrightarrow{ED} \text{ is } (-8-0)\hat{\imath} + (-6-0)\hat{\jmath} + (0-24)\hat{k} \qquad \text{i.e., } -8\hat{\imath} - 6\hat{\jmath} - 24\hat{k}$	1
	(ii) B is (8, 6, 0) and that of E are (0, 0, 24), therefore length of cable	
	EB = $\sqrt{(8-0)^2 + (6-0)^2 + (0-24)^2}$ = $\sqrt{676} = \sqrt{26}$ units	1
	V (0 0) 1 (0 0) 1 (0 11) = 10/0= 120 amas	
	(iii) A is (8, -6, 0), B is (8, 6, 0) C is (-8,6,0), D is (-8, -6, 0) and that of E are (0, 0, 24).	
	SO $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = (8\hat{\imath} - 6\hat{\jmath} - 24\hat{k}) + (8\hat{\imath} + 6\hat{\jmath} - 24\hat{k}) + (-8\hat{\imath} + 6\hat{\jmath} - 24\hat{k}) + (-8\hat{\imath} - 6\hat{\jmath} - 24\hat{k})$	2
	$\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = -96\hat{k}$	
	OR	
	The coordinates of A are (8, -6, 0) and that of E are (0, 0, 24).	
	So cartesian equation of line along \overrightarrow{EA} =	
	$\frac{x-0}{8-0} = \frac{y-0}{-6-0} = \frac{z-24}{0-24} \qquad \Rightarrow \frac{x}{-4} = \frac{y}{3} = \frac{z-24}{12}$	
38	Let E be the event that it rains on chosen	
30	day, F be the event that it does not rain on chosen	

day and A be the event the weatherman predict rain.

Then we have, $P(E) = \frac{6}{366}$, $P(F) = \frac{360}{366}$, $P(A \mid E) = \frac{8}{10} \text{ and } P(A \mid F) = \frac{2}{10}$ (i) $P(A) = P(E) P(A \mid E) + P(F) P(A \mid F)$ $= \frac{6}{366} \times \frac{8}{10} + \frac{360}{366} \times \frac{2}{10} = \frac{768}{3660} = \frac{64}{305}$ (ii) $P\left(\frac{E}{A}\right) = \frac{P(E) P(A \mid E) + P(F) P(A \mid F)}{P(E) P(A \mid E) + P(F) P(A \mid F)}$ $= \frac{\frac{6}{366} \times \frac{8}{10}}{\frac{6}{366} \times \frac{8}{10} + \frac{360}{366} \times \frac{2}{10}} = \frac{1}{16}$

SAMPLE QUESTION PAPER -05 (2024-25)

SUBJECT: MATHEMATICS (041)

Time: - 3 Hours CLASS: XII Max Marks: - 80

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculator is not allowed.

SECTION A

(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the correct option (Question 1 - Question 18):

1. If A is matrix of order m × n and B is a matrix such that AB' and B'A are both defined, then order of matrix B is

(a) m × m (b) n × n (c) n × m (d) m × n

2.	If A is any square matrix of order 3×3 such that $ A = 3$, Then the value of $ adjA $ is	1
	(a) 3 (b) $\frac{1}{3}$ (c) 9 (d) 27	
3.	If $ \vec{a} = 10$, $ \vec{b} = 2$ and $\vec{a} \cdot \vec{b} = 12$, then the value of $ \vec{a} \times \vec{b} $ is	1
	(a) 5 (b) 10 (c) 14 (d) 16	
4.	The function $f(x) = \frac{4-x^2}{4x-x^3}$ is	1
	(a) Discontinuous at only one point	
	(b) Discontinuous at exactly two points	
	(c) Discontinuous at exactly three points	
	(d) None of these	
5.	$\int log x dx$ is equal to	1
	(a) $x \log x + x + C$	
	(b) $x \log x - x + C$	
	(c) $xlogx - 1 + C$	
	(d) $1/x + C$	
6.	The integrating factor of differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is	
	(a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$	
7.	The point which does not lie in the half plane $2 \times + 3 \times - 12 \le 0$ is	1
	(a) $(1,2)$ (b) $(2,1)$ (c) $(2,3)$ (d) $(-3,2)$	
8.	If $ heta$ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a} \cdot \vec{b} =$	1
	$\left ec{a} imes ec{b} \right $ when $ heta$ is equal to	
	(a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) π	

9.	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1 + \cos 2x} \text{is equal to}$	1
	(a) 1 (b) 2 (c) 3 (d) 4	
10.	Let A be singular matrix then find the value of x where $A = \begin{bmatrix} x & 2 \\ x - 2 & 4 \end{bmatrix}$	1
	(a). 2 (b) 4 (c) -2 (d) 0	
11.	The corner points of the feasible region determined by the system of linear constraints are (0,0), (0,40), (20,40), (60,20),(60,0). The objective function is $Z=4x+3y$. Compare the quantity in Column A and Column B	1
	Column A Column B	
	Maximum of Z 325	
	 (a) The quantity in Column A is greater. (b) The quantity in Column B is greater. (c) The two quantities are equal (d) The relationship cannot be determined on the basis of the information supplied. 	
12.	If A is a square matrix such that $ A = 5$, Then the value of $ A A^T$ is	1
	(a) 25 (b) ± 25 (c) ± 5 (d) 5	
13.	If A is a 3×3 skew symmetric matrix, then the value of $ A $ is	1
	(a) Any real number (b) positive real number	
	(c) 0 (d) negative real number	
14.	If $P(A) = \frac{1}{2}$, $P(B) = 0$, then $P(A B)$ is	1

	(a) 0 (b) $\frac{1}{2}$ (c) not defined (d) 1	
15.	The general solution of $e^x \cos y dx - e^x \sin y dy = 0$ is	1
	(a) $e^x \cos y = k$ (b) $e^x \sin y = k$	
	(c) $e^x = k \cos y$ (d) $e^x = k \sin y$	
16.	If $x = t^2$ and $y = t^3$ then $\frac{d^2y}{dx^2}$	1
	(a). $\frac{3}{2}$ (b) $\frac{3}{4t}$ (c) $\frac{3}{2t}$ (d) $\frac{3}{4}$	
17.	The magnitude of projection $(2 \hat{\imath} - \hat{j} + \hat{k})$ on $(\hat{\imath} - 2\hat{\jmath} + 2 \hat{k})$ is	1
	(a) 1 unit (b) 2 units (c) 3 units (d) 4 unit	
18.	If a line makes angles α , β , γ with the positive direction of co – ordinate axes, then the value of $sin^2 \alpha + sin^2 \beta + sin^2 \gamma$ is.	1
	(a) .0 (b) 1 (c) 2 (d) 3	
	(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.) (a) Both (A) and (R) are true and (R) is the correct explanation of (A). (b) Both (A) and (R) are true but (R) is not the correct explanation of(A). (c) (A) is true but (R) is false. (d) (A) is false but (R) is true.	
19.	Assertion (A): Range of $\cot^{-1} x$ is $(0,\pi)$ Reason (R): Domain of $\tan^{-1} x$ is R.	1
20.	Assertion (A) : The acute angle between the line $\vec{r} = \hat{\imath} + \hat{\jmath} + 2\hat{k} + \lambda (\hat{\imath} - \hat{\jmath})$ and the x- axis is $\pi/4$ Reason (R) : The acute angle θ between the lines $\vec{r} = x_1 \hat{\imath} + y_1 \hat{\jmath} + z_1 \hat{k} + \lambda (a_1 \hat{\imath} + b_1 \hat{\jmath} + c_1 \hat{k})$ and	1
	$\vec{r} = x_2 \hat{\imath} + y_2 \hat{\jmath} + z_2 \hat{k} + \mu(a_2 \hat{\imath} + b_2 \hat{\jmath} + c_2 \hat{k})$	
	is given by $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$	
	SECTION B This section comprises of 5 very short answer (VSA) type questions of 2 marks early sections.	ach)
	ims section comprises of 3 very short answer (vsA) type questions of 2 marks e	uC11.)

21.	Write the principal value of $tan^{-1}(\sqrt{3}) + cot^{-1}(-\sqrt{3})$.	2
	OR	
	If $A = \{1,2,3\}$, $B = \{4,5,6,7\}$ and $f = \{(1,4), (2,5), (3,6)\}$ is a function from A to B. State whether f is one – one or not.	
22.	The radius of a ccircle is increasing at the rate of 5 cm/min. Find the rate of	2
	increasing of its area when its radius is 10 cm.	_
23.	Find a vector in the direction of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ that has magnitude 10 units.	2
	OR	
	If a line makes angles 90° , 60° and θ with x, y and z axis respectively, where	
24	θ is acute, then find θ	2
24.	Write the derivative of sin x with respect to cos x.	2
25.	Find the area of triangle with vertices A (0,1,-1), B(1,0,-1) and C(0,1,2) Section C	
	(This section comprises of 6 short answer (SA) type questions of 3 marks each.)	
	(This section comprises of a short answer (SA) type questions of 3 marks each.)	
26.		3
	Find: $\int \sin^{-1}(2x) dx$.	
27.		3
	Find: $\int \frac{x}{(x^2+1)(x-1)} dx$	
	$\int_{0}^{\infty} (x^{2}+1)(x-1)^{-x}$	
28.	A and B throw a pair of dice alternately. A wins the game if he gets a total of 9	3
	and B wins if he gets a total of 7. If A starts the game, find the probability of	
	winning the game by B.	
	OR	
	A problem in Mathematics is given to 4 students A, B, C. Their chances of	
	solving the problem are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{2}{3}$ respectively. What is the probability	
	solving the problem are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{3}$ respectively. What is the probability	
	that the problem will be solved?	
29.	Evaluate: $\int_{0}^{\frac{\pi}{4}} log[1 + tanx]dx$	
	OR	
	Evaluate: $\int_{1}^{3} x^{2} - 2x dx$	
30.	Solve the differential equation: $x \frac{dy}{dx} = y - x \tan \left(\frac{y}{x}\right)$	3
	OR Find the particular solution of the differential equation	
	Find the particular solution of the differential equation $\begin{pmatrix} 1 & 2 & dy \\ 1 & 1 & 1 \end{pmatrix}$	
	$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$ given that y = 0 when x = 1.	
31.	Solve the following Linear Programming Problem graphically:	
	Minimize: $Z = 5 x + 10 y$	
	subject to	

		1
	$x+y \geq 60$,	
	$x-2y \ge 0,$	
	$x + 2 y \le 120$,	
	$x \ge 0, y \ge 0$	
	x = 0, y = 0	
	SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	
32.	Let $A = \{ x \in Z : 0 \le x \le 12 \}$. Show that $R = \{(a, b) : a, b \in A, a - b \text{ is divisible } \}$	5
	by 4 } Is an equivalence relation . Also write the equivalence class [2].	
	OB	
	OR 4x	
	Let f: $R - \left\{-\frac{4}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Show that f is a	
	one one function. Also check whether f is an onto function or not	
22		
33.	Find the shortest distance between the lines:	5
	$\vec{r} = (t+1)\hat{i} + (2-t)\hat{j} + (1+t)\hat{k}$	
	$\vec{r} = (2s + 2) \hat{i} - (1 - s) \hat{j} + (2s - 1) \hat{k}.$	
	OR	
	Find the co-ordinates of the foot of perpendicular drawn from the point	
24	A $(1, 8, 4)$ to the line joining the points B $(0, -1, 3)$ and C $(2, -3, -1)$.	_
34.	If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}$, find A^{-1} . Use A^{-1} to solve the following system of	5
	3 1 1	
	equations	
	x + y + z = 6, $x + 2z = 7$, $3x + y + z = 12$	
35.	Using method of integration, find the area of the region $x^2 + y^2 = 4$ and $x = $	5
	$\sqrt{3}y$ with x-axis in first quadrant	
	SECTION E	
	on comprises of 3 case-study/passage-based questions of 4 marks each with subpa	
	wo case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respective case study question has two subparts of 2 marks each)	ery.
36.	Read the following passage and answer the questions given below.	1+1
30.	nead the following pussage and answer the questions given below.	+2
1		1

Sonam wants to prepare a sweet box for Diwali at home. For making lower part of box, she takes a square piece of card board of side 18cm.

- (i) If x cm be the length of each side of the square cardboard which is to be cut off from corner of the square piece of side 18 cm, then x must lie in which interval?
- (ii) What would be the volume of the box (in terms of x)?
- (iii) (a)The values of x for which $\frac{dV}{dx} = 0$, are

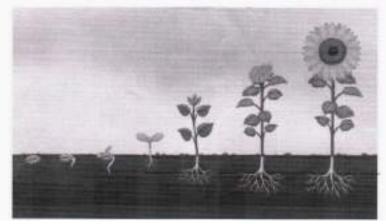
OR

- (b). What is the value of maximum volume?
- Read the following passage and answer the questions given below.

 In a group activity class, there are 10 students whose ages are 16, 17, 15, 14, 19, 17, 16, 19, 16 and 15 years. One student is selected at random such that each has equal chance of being chosen and age of the student is recorded.

- (i)Find the probability that the age of the selected student is a composite number.
- (ii) Let X be the age of the selected student. What can be the value of X?
- (iii) (a) Find the probability distribution of random variable X and hence find the mean age.

OR


(iii) (b) A student was selected at random and his age was found to be greater than 15 years. Find the probability that his age is a prime number.

In an agricultural institute, scientists do experiments with varieties of seeds to grow them in different environments to produce healthy plants and get more yield.

A scientist observed that a particular seed grew very fast after germination. He had recorded growth of plant since germination and he said that its growth can be defined by the function

$$f(x) = \frac{1}{3}x^3 - 4x^2 + 15x + 2, 0 \le x \le 10$$

where x is the number of days the plant is exposed to sunlight.

On the basis of the above information, answer the following questions:

- (i) What are the critical points of the function f(x)?
- (ii) Using second derivative test, find the minimum value of the function.

SAMPLE QUESTION PAPER -05, 2024-25 BLUEPRINT

CLASS: XII MATHEMATICS (Code-041)

UNITS	NAME OF CHAPTERS	SECTION (Objectiv (1 MARK	e Type)	SECTION B (VSA) (2	SECTION C (SA) (3	SECTION D (LA) (5 MARKS	SECTION E (CBQ) (4 MARKS	TOTAL
		MCQ	ARQ	MARKS EACH)	MARKS EACH)	EACH)	EACH)	
UNIT-I (Relations &	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)
Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)					
UNIT-II	MATRICES	2(2)						10(5)
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)			
	APPLICATION OF DERIVATIVE	2(2)					4*(1)	35(17)

2+2

	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		
	APPLICATION OF INTEGRATION			2*(1)	3(1)			
	DIFFERENTIAL EQUATION	2(2)			3*(1)			
UNIT-IV	VECTORS	1(1)		2(1)				
(Vectors & 3D)	THREE-DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

^(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE PAPER-05

MATHEMATICS CLASS XII 2024-25

MARKING SCHEME

Class XII Sub: Mathematics

Sr. No.	Answers and steps	Marks
1	(d) m × n	1
2.	(c) 9	1
3	(d) 16	1
4	(a) Discontinuous at exactly three points	1
5.	(e) $x \log x + x + C$	1
6.	(c) sec x	1
7.	(c) (2,3)	1
8.	(b) $\frac{\pi}{4}$	1
9.	(a) 1	1
10.	(c) -2	1
11	(b)The quantity in Column B is greater	1
12.	(a)25	1
13.	(c) 0	1
14.	(c) not defined	1
15	$(a) e^x \cos y = k$	1

16.	(b) $\frac{3}{4t}$	1
	4t	
17.	(b) 2 units	1
18	(c) 2	
19	(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).	1
	OI(A).	
20	(a) Both (A) and (R) are true and (R) is the correct explanation of (A)	1
21	$\frac{\pi}{3} + \frac{5\pi}{6} =$	1½
	/ 7π	1/2
	6	
	OR	1
	1,2,3 have different images in B	
22	There is no element left which has image in B	
22	$\frac{dr}{dt} = 5cm/min$	
	$A = \pi r^2$	1/2
	$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$	1
	$\begin{array}{ccc} dt & dt \\ 2\pi & 10.5 & = 20\pi & \text{sq cm/min} \end{array}$	1/2
23	Unit vector in direction of $\vec{a} = \hat{6}i - 2\hat{j} + 3\hat{k}$ is $\frac{6\hat{i}-2\hat{j}+3\hat{k}}{\sqrt{36+4+9}}$	1½
	, , , , , , , , , , , , , , , , , , , ,	1/2
	Required vector is $\frac{10(6\hat{\iota}-2\hat{\jmath}+3\widehat{k})}{7}$	
	OR	1/2
	$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$	1/2
	$\cos^2 90 + \cos^2 60 + \cos^2 \theta = 1$	1/2
	$0 + \frac{1}{4} + \cos^2 \theta = 1 \cos \theta = \pm \sqrt{3}/2$	
	$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$	1/2
0.4		
24	$y=\sin x$, $y=\cos x$	1/2 +1/2
	$\frac{d(\sin x)}{dx} = \cos x, \ \frac{d(\cos x)}{dx} = -\sin x$	/2 〒/2
	$\left \frac{dy}{dz} \right = \frac{\cos x}{-\sin x} = -\cot x$	1
25.	$\frac{\frac{dy}{dz} = \frac{\cos x}{-\sin x} = -\cot x}{\overrightarrow{AB} = (\hat{\imath} - \hat{\jmath}), \overrightarrow{AC} = 3\hat{k}}$	1/2
	$ \overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2} \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \frac{1}{2} (3\hat{i} - 3\hat{j})$	1
	F	1/2
	Area = $\sqrt{(\frac{3}{2})^2 + (\frac{3}{2})^2} = \frac{3}{2}\sqrt{2}$ sq units.	
26	Applying correct formula	
	$\int uv dx = u \int \{v dx - \int (\frac{du}{dx} \int v dx)\} dx$	1½
	$\int_{0}^{2x} dx \int_{0}^{2x} dx \int_{0}^{2x} dx \int_{0}^{2x} dx$	1½
	$\sin^{-1}(2x) \int 1 dx - \int \frac{2x}{\sqrt{1-4x^2}} dx$	

	$\sin^{-1}(2x) \cdot x - \sqrt{1 - 4x^2} + c$	
	$SIII (2\lambda).X = VI \forall \lambda + C$	
27.	$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{(x^2+1)} + \frac{C}{(x-1)}$	1
	Finding A, B and C	
	$A = \frac{-1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$	1/2
	$\int \frac{x}{(x^2+1)(x-1)} dx = \int \frac{-x+1}{2(x^2+1)} dx + \int \frac{dx}{2(x-1)}$	1½
	$\frac{-1}{2}\log(x^{1}+1) + \frac{1}{2}\tan^{-1}x + \frac{1}{2}\log(x-1) + c$	
	2 10 g (x - 1) + 2 10 g (x - 1) + 0	
28.	P(A) = 1/36, $P(B) = 1/36$ $P(A') = 35/36$, $P(B') = 35/36$	1
	P(winning of A) = $P(A) + P(\overline{AB}A) + P(\overline{AB}ABA) + \dots$	
	$\frac{1}{1}$	1
	$\frac{1}{36} + \frac{1}{36} \left(\frac{35}{36}\right)^2 + \dots = \frac{\frac{1}{36}}{1 - \frac{35^2}{36}} = 36/71$	
	P(winning of B) = $P(\overline{AB}) + P(\overline{ABAB}) + P(\overline{ABABAB}) + \dots$	
	$\frac{1}{36} \left(\frac{35}{36}\right)^{1+} \frac{1}{36} \left(\frac{35}{36}\right)^{3} + = 35/71$	
	OR	1/ ₂ 1/ ₂
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{4}, P(C) = \frac{2}{3}$	
	$P(\overline{A}) = \frac{2}{3}, P(\overline{B}) = \frac{3}{4} P(\overline{C}) = \frac{1}{3}$	1/2
	3 1 3	
	Problem will be if anyone of these three solve the problem	1/2
	P(atleast one of them) = $1-P(\overline{ABC})$	
	$1 - \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{1}{3} = 5/6$	
	.0	
29	Applying property $\int_0^a f(x) dx \int_0^a f(a-x) dx$	1/2
	$I = \int_{0}^{\frac{\pi}{4}} \log(1 + \frac{1 - \tan x}{1 + \tan x}) dx$	1/2
		1
	$I = \int_0^{\frac{\pi}{4}} \log 2 dx - \int_0^{\frac{\pi}{4}} \log(1 + tanx) dx$	1
	$I = \log 2 \cdot \frac{\pi}{8}$	
	OR	1
	Redefining the function $ x^2 - 2x = \begin{cases} -(x^2 - 2x) & \text{if } 1 \le x \le 2\\ (x^2 - 2x) & \text{if } 2 \le x \le 3 \end{cases}$	1

	$\int_{1}^{3} x^{2} - 2x dx = \int_{1}^{2} -(x^{2} - 2x) dx + \int_{2}^{3} (x^{2} - 2x) dx$	
	$\int_{1}^{1} x - 2x dx = \int_{1}^{1} -(x - 2x) dx + \int_{2}^{1} (x - 2x) dx$	
	$\left[x^{2} - \frac{x^{3}}{3}\right]_{1}^{2} + \left[-x^{2} + \frac{x^{3}}{3}\right]_{2}^{3} = 2$ Put y =vx $\frac{dy}{dx} = v + x \frac{dv}{dx}$	
30	Put $y = vx \frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2
	$x(v+x\frac{dv}{dx})=vx-x tan v$	1/2
	$\frac{dv}{dx} = \frac{-dx}{dx}$	1/2
	$\int \frac{dv}{\tan v} = \frac{-dx}{x}$ $\int \frac{dv}{\tan v} = \int \frac{-dx}{x}$	1 1/2
		/2
	logsinv = logc/x	
	$\sin\frac{y}{x} = c/x$	
	OR $\frac{dy}{dy} + R = 0$	
	compare with $\frac{dy}{dx} + Py = Q$	
	$P(x) = \frac{2x}{1+x^2} Q(x) = (\frac{1}{1+x^2})^2$	1
	I. $F = e^{\int \frac{2x}{1+x^2} dx} = 1 + x^2$	
	Solution of equations is	1
	Y. IF = $\int Q \times IF dx$	
	$y. (1 + x^2) = \int \frac{1}{1 + x^2} dx$	1
	$y.(1 + x^2) = \tan^{-1} x + c$	
	Using condition x=0, y=1, c= $\frac{-\pi}{4}$	
	$y.(1 + x^2) = \tan^{-1} x - \frac{\pi}{4}$	
31	60 50 40 30 20 (40, 20) D (40, 20) D (120, 0)	2
	(0, 0) 10 20 30 40 50 60 20 80 90 100 110 120 x + 2y = 120	1
	Coorect image	

	Z(60,0)=300 Z(120,0)=600				
	Z(60,30) = 600				
22	Z(40,20) = 400 MAXIMUM AT LINE X+2Y=120				
32	Let $A = \{ x \in Z : 0 \le x \le 12 \}$. Show that $R = \{ (a, b) : a, b \in A, a - b \text{ is divisible by 4 } \}$ Is an equivalence relation . Also write the	1			
	equivalence class [2].				
	R is reflexive relation iff $ a - a = 0$ is divisible by 4 which is true	1			
	R is symmetric :	1			
	Let aRb \Leftrightarrow $ a - b $ is divisible by $4 \Leftrightarrow b - a $ is divisible by $4 \Leftrightarrow$ bRa	2			
	R is transitive:				
	Let aRb \Leftrightarrow $ a - b $ is divisible by $4 = a - b = \pm 4m$	1			
	$bRc \Leftrightarrow b - c $ is divisible by $4 \Leftrightarrow b - c = \pm 4n$				
	$a - c = \pm 4m \pm 4n$				
	aRc				
	Equivalance class of [1]={1,5,9}	2			
	OR				
	To prove one by taking $f(x_1)=f(x_2)$				
	$\Rightarrow \frac{4x_1}{3x_1+4} = \frac{4x_2}{3x_2+4} \Rightarrow x_1 = x_2$	1			
	$f(x) = \frac{4x}{3x + 4} = y$				
	3xy+4y=4x	2			
	X(3y-4) = -4y				
	$x = \frac{-4y}{3y - 4}$				
	f is not onto as every element of y has preimage in x such that $f(x) = y$				
33.	(a) $\overrightarrow{a_1} = \hat{\iota} + 2\hat{\jmath} + \hat{k} \overrightarrow{a_2} = 2\hat{\iota} - \hat{\jmath} - \hat{k}$				
	$\overrightarrow{b_1} = \hat{\iota} - \hat{\jmath} + \hat{k} b_2 = 2\hat{\iota} + \hat{\jmath} + 2\hat{k}$	1 1			
	$ \overrightarrow{a_2} - \overrightarrow{a_1} = \hat{\imath} - 3\hat{\jmath} - 2\hat{k} $ $ \overrightarrow{b_1} \times b_2 = -3\hat{\imath} + 0\hat{\jmath} + 3\hat{k} $	1			
	$\overrightarrow{lb_1} \times b_2 I = 3\sqrt{2}$				
	$SD = \frac{\overrightarrow{I(a_2 - a_1)}.\overrightarrow{(b_1} \times b_2)I}{ \overrightarrow{(b_1} \times \overrightarrow{b_2} } = \frac{9}{3\sqrt{2}}$				
	$\frac{ (v_1 \times v_2) }{ v_1 \times v_2 } = 3\sqrt{2}$	1			

	(b). Equation of line $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-3}{4}$	2
		1
	$put_{\frac{x}{2}} = \frac{y+1}{-2} = \frac{z-3}{4} = k$	1
	find co ordinates of any poin on line BC (2k,-2k-1,4k+3)	
	find the dr's of perpendicular from A	
	((2k-1,-2k-1-8,4k+3-4)	
	Condition of perpendicular	
	2(2k-1)-2(-2k-9)+4(4k-1))=0	
	Value of k=1	
	Point (2,-3,7)	
34	Find IAI = 4	1
34		- I
		1
	Find adj(A)= $\begin{bmatrix} 5 & -2 & -1 \end{bmatrix}$	1/2
		1
	Find adj(A)= $\begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$ Find $A^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$	1
	The solution of system of equation is $X = (A^{-1})B$	1/2
		/2
	$ X = \frac{1}{4} 5 - 2 - 1 7 $	
	* 1 2 -1 12	
	$\begin{bmatrix} x \end{bmatrix}$	
	$X = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 12 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} x = 3, y = 1 \text{ and } z = 2$	
	$\lfloor L_z \rfloor \lfloor 2 \rfloor$	
35		1
		1/2
		/2
	3 9 1 1 3 3	
	X / /	1
	Daugh akatah	
	Rough sketch	2
	Point of intersection in 1st quadrant by putting y =x in equation of	
	- can a managadian in a quadrant by patting y =x in aquation of	
	circle , we have $(1\sqrt{3},)$	
	$\int_0^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^2 \sqrt{4 - x^2} dx =$	1/2
	$x^2 \sqrt{3}$ $x \sqrt{4}$ x^2 $4 \sin^{-1} \frac{\chi^2}{2}$	
	$\frac{x^2}{2\sqrt{3}} + \frac{x\sqrt{4-x^2}}{2} + \frac{4\sin^{-1}\frac{x^2}{2}}{2}$	
	$2\sqrt{3}_0$ 2 2 $\sqrt{3}$	
	On solving	
	-	

	$\sqrt{3}/2 + 2\frac{\pi}{2} - \sqrt{3}/2 + 2\sin^{-1}\frac{\sqrt{3}}{2}$					
	$\pi - \frac{\pi}{3} = 2\pi/3$					
36	(i) (0,9)					1
	(ii) $v = x($	$(18 - 2x)^2$				2
	(iii) (a)Find	d dv/dx ,				
	X=3					
	OR					
	(iii) Check maximum by second derivative testy or first derivative test on v					
27	Maximum					
37	(i) 3/5					1
	(ii) X=14,15,16,17,19					1
	(iii) (a).					2
	х	14	15	16	17	
	P(x)	0.1	0.2	0.3	0.2	
	Mean =1.4+3	.0+4.8+3.4+3	3.8=16.4			
	OR					
	(iii)(b) P(g					
	P(num					
-00	Reqiured p					
38	(1) F'(x)=	$x^2 - 8x + 15$				2 2
	Critical poi	2				
	(i) $F''(x) = 2x - 8$					
	(ii) Minimum value 56/3 cm @ F					

MEDIA LINKS KVS ZIET MUMBAI 400078 KANJURMARG WEST CONNECTING TO PEOPLE SOCIAL MEDIA......! https://zietmumbai.kvs.gov.in/ https://www.facebook.com/zietmumbai