केन्द्रीय विद्यालय संगठन, भोपाल संभाग KENDRIYA VIDYALAYA SANGATHAN,BHOPAL REGION

कक्षा- XII /Class-XII

SESSION/सत्र -2024 -2025

SET-2/सेट-2

Marking Scheme

Mathematics (Code - 041)

Q. No.	Answer	Hints/solution
	Allowel	Section: A (Multiple Choice Questions- 1 Mark each)
1.	(c)	bijective function
2.	(a)	$\sin\left[\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right] = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\frac{\pi}{2} = 1$
3.	(a)	$\begin{array}{ccccc} P & Y & W & Y \\ \downarrow^{\text{Order}} & \downarrow^{\text{Order}} & \downarrow^{\text{Order}} & \downarrow^{\text{Order}} \\ p \times k & 3 \times k & n \times 3 & 3 \times k \end{array}$ $\begin{array}{cccccc} \text{For } PY \text{ to exist} & \text{Order of } WY \\ k = 3 & = n \times k \end{array}$ $\begin{array}{ccccc} \text{Order of } PY = p \times k & \\ \text{For } PY + WY \text{ to exist order}(PY) = \text{order}(WY) \\ \therefore & p = n \end{array}$
4.	(b)	Number of Symmetric matrices of order $3 \times 3 = 2^6 = 64$
5.	(a)	4 = (3x - 2) - (x + 6) x = 6
6.	(d)	$ 2A^{T} = 2^{3} A^{T} = 8 A = 24$
7.	(d)	$\frac{dy}{dt} = 3\cos^2 t \cdot (-\sin t), \qquad \frac{dx}{dt} = 3\sin^2 t \cdot (\cos t)$ $\frac{dy}{dx} = \frac{-3\cos^2 t \cdot \sin t}{3\sin^2 t \cdot \cos t} = -\cot t$
8.	(d)	The graph of the function $f: R \to \mathbb{Z}$ defined by $f(x) = [x]$; (where [.] denotes $G.I.F$) is a straight line $\forall x \in (2.5-h, 2.5+h)$, 'h' is an infinitesimally small positive quantity. Hence, the function is continuous and differentiable at $x = 2.5$.

9.	(a)	We know, $\int_{0}^{2a} f(x) dx = 0$, if $f(2a-x) = -f(x)$ Let $f(x) = \csc^{7} x$. Now, $f(2\pi - x) = \csc^{7}(2\pi - x) = -\csc^{7} x = -f(x)$ $\therefore \int_{0}^{2\pi} \csc^{7} x dx = 0$; Using the property $\int_{0}^{2a} f(x) dx = 0$, if $f(2a-x) = -f(x)$.
10.	(c)	$\frac{d}{dx} \left(\frac{dy}{dx}\right)^4 = 0 \Rightarrow \frac{d}{dx} (y')^4 = 0$ Solving the above, $4y'^3 \times y'' = 0$ Order, m=2 Degree, n=1 and m + n = 3
11.	(b)	A differential equation of the form $\frac{dy}{dx} = f(x,y)$ is said to be homogeneous, if $f(x,y)$ is a homogeneous function of degree 0. Now, $x^n \frac{dy}{dx} = y \left(\log_e \frac{y}{x} + \log_e e \right) \Rightarrow \frac{dy}{dx} = \frac{y}{x^n} \left(\log_e e \cdot \left(\frac{y}{x} \right) \right) = f(x,y)$; (Let). $f(x,y)$ will be a homogeneous function of degree 0, if $n = 1$.
12.	(c)	$ \vec{a} = 3, \vec{b} = 4, \vec{a} + \vec{b} = 5$ We have $ \vec{a} + \vec{b} ^2 + \vec{a} - \vec{b} ^2 = 2(\vec{a} ^2 + \vec{b} ^2) = 2(9 + 16) = 50 \Rightarrow \vec{a} - \vec{b} = 5.$
13.	(c)	Any vector in the direction of a vector \vec{a} is given by $\frac{\vec{a}}{ \vec{a} } = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$ $\therefore \text{ Vector in the direction of } \vec{a} \text{ with magnitude 9 is } 9 \frac{\vec{a}}{ \vec{a} } = 9 \cdot \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3} = 3(\hat{i} - 2\hat{j} + 2\hat{k})$
14.	(a)	We have, $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ $\vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (\hat{i} + 2\hat{j} + \hat{k}) = 2 + 6 + 2 = 10$ and $ \vec{b} = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$ Hence, projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{ \vec{b} } = \frac{10}{\sqrt{6}}$.

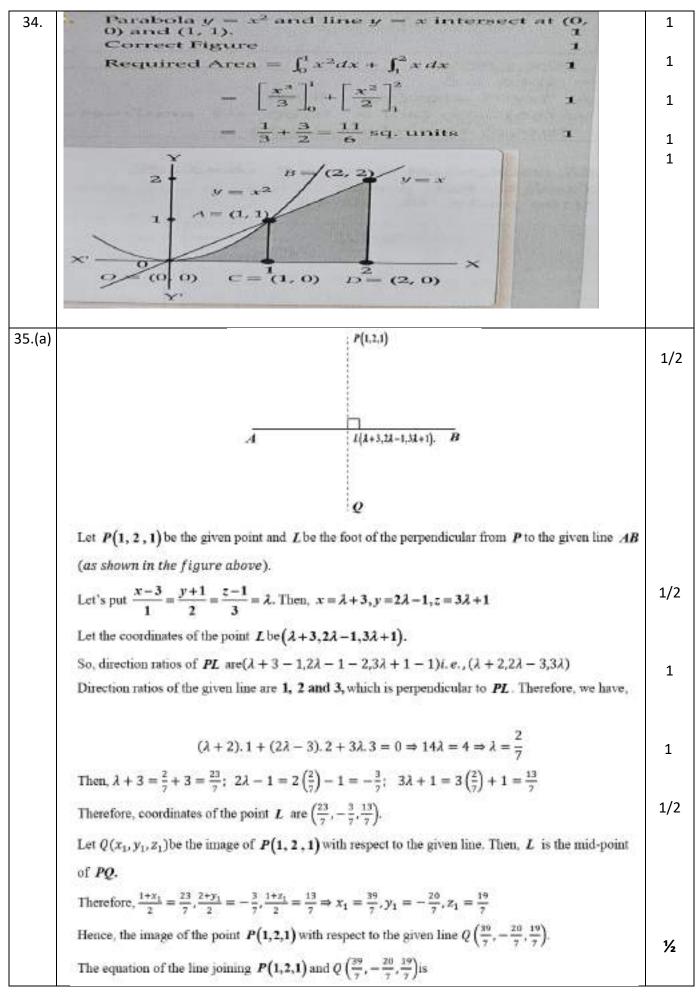
15.	(b)	We know that $cos^2\alpha + cos^2\beta + cos^2\gamma = 1$ so $sin^2\alpha + sin^2\beta + sin^2\gamma = 2$
16.	(c)	Equation of line $\frac{x-1/3}{1/6} = \frac{y+1/3}{1/3} = \frac{z-1}{1/2}$ so DR of line are 1, 2, 3
17.	(a)	Convex Polygon
18.	(a)	$P\left(\frac{A}{B}\right) = \frac{3}{8}$
19.	(c)	Option (c) is correct, because A is true and R is false
20.		Answer (b) is correct, because Corner points are $(0, 0)$, $(10, 0)$, $(20/3, 20/3)$ and $(0, 10)$ $Z_{max} = x + 3y = 0 + 3x10 = 30$ both A and R are true but R is not the correct explanation for A

SECTION: B (VSA Questions of 2 marks each)

	(V3A Questions of 2 marks each)	
21.	$\sin \left[\cot^{-1} \{\cos(\tan^{-1}1)\}\right] = \sin \left[\cot^{-1} \left\{\cos\frac{\pi}{4}\right\}\right]$ $= \sin \left[\cot^{-1} \frac{1}{\sqrt{2}}\right]$ $= \sin \left[\sin^{-1} \frac{\sqrt{2}}{\sqrt{3}}\right]$ $= \frac{\sqrt{2}}{\sqrt{3}}$	1/2 1/2 1/2 1/2 1/2
22.	RHL (at $x = 3$) = 3b + 3 LHL (at $x = 3$) = 3a + 1 f(3) = 3a + 1 f(x) is continuous at $x = 3$ so 3b + 3 = 3a + 1 Relation between a and b is 3a – 3b = 2	½ ½ ½ ½ ½

23.(a)		
201(0.)	$y = \tan^{-x} x$ and $z = \log_e x$	$\frac{1}{2}$
	y = dy = 1	2
	Then $\frac{dy}{dx} = \frac{1}{1+x^2}$	$\frac{1}{2}$
	, $dz = 1$	2
	and $\frac{dz}{dx} = \frac{1}{x}$	
	dy	1
	$\frac{dy}{dz} = \frac{dx}{dz}$	$\frac{1}{2}$
	$dz = \frac{dz}{dz}$	
	So, ax	31
	So, $ = \frac{\frac{1}{1+x^2}}{\frac{1}{1}} = \frac{x}{1+x^2}. $	$\frac{1}{2}$
	$=\frac{1}{1}=\frac{1}{1+x^2}.$	200
	x	
	$ \text{OR} $ Let $y = (\cos x)^x$.	
	logy = xlogcosx	
		$\frac{1}{2}$
23.(b)	On differentiating both sides with respect to x , we get	2
	$\Rightarrow \frac{dy}{dx} = (\cos x)^{x} \left\{ \log_{e} \cos x \frac{d}{dx}(x) + x \frac{d}{dx} (\log_{e} \cos x) \right\}$	1
	$\frac{dx}{dx} = \left\{ \frac{1}{\log_{\epsilon} \cos x} \frac{dx}{dx} + \frac{1}{\log_{\epsilon} \cos x} \right\}$	$\frac{1}{2}$
	$dv = \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} dv$	_
	$\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^x (\log_e \cos x - x \tan x) .$	1
24.(a)		1/
	We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$	1/2
	$(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$	
	$(b + \lambda c) \cdot a = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$	1
	· ·	
	$\lambda = -\frac{5}{8}$	1/2
24.(b)	OR	
	$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = (4\hat{\imath} + 3\hat{k}) - \hat{k} = 4\hat{\imath} + 2\hat{k}$	1
		$\frac{1}{2}$
	Direction cosines are $\frac{2}{\sqrt{5}}$, 0 , $\frac{1}{\sqrt{5}}$	1.5
		1.5
25.	Writing the equation of line	1/2
		1/2 1/2
	Putting value	
	Proving perpendicular to z axis	1

	SECTION: C (SA Questions of 3 marks each)	
26.(a)	Let $I = \int_{-1}^{2} x^3 - x dx$ Again let $f(x) = x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)$ Now break the limit at x=0, 1(because on putting f(x)=0 we get x=0, 1, -1)	1
	It is clear that $x^3 - x \ge 0$ on [-1, 0] $x^3 - x \le 0$ on [0,1] $x^3 - x \ge 0$ on [1,2]	1/2
	Hence, the interval of the integral can be subdivided as $\int_{-1}^{2} x^3 - x dx = \int_{-1}^{0} (x^3 - x) dx - \int_{0}^{1} (x^3 - x) dx + \int_{1}^{2} (x^3 - x) dx = \frac{11}{4}$	½ 1
26.(b)	Ans: Let $I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$ (i)	
	$= \int_{0}^{\pi} \frac{(\pi - x)\sin(\pi - x)}{1 + [\cos(\pi - x)]^{2}} dx \left[\because \int_{0}^{a} f(x)dx = \int_{0}^{a} f(a - x)dx \right] \Rightarrow I = \int_{0}^{\pi} \frac{(\pi - x)\sin x}{1 + \cos^{2} x} dx (ii)$	1/2
	Adding (i) and (ii), we get $2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx$	1/2
	Put $\cos x = t \implies -\sin x dx = dt$ Also, $x = 0 \implies t = 1$ and $x = \pi \implies t = -1$ $\therefore 2I = \int_{1}^{-1} \frac{-\pi dt}{1+t^2} \implies I = \frac{\pi}{2} \int_{-1}^{1} \frac{dt}{1+t^2}$	1/2
	$I = \frac{\pi}{2} \left[\tan^{-1} t \right]_{-1}^{1} = \frac{\pi}{2} \left[\tan^{-1} (1) - \tan^{-1} (-1) \right] = \frac{\pi}{2} \left[\frac{\pi}{4} - \left(-\frac{\pi}{4} \right) \right] = \frac{\pi^{2}}{4}$	1


27.	Putting $\frac{-x}{2} = t$, we get $x = -2t$ and $dx = -2dt$.	
	$I = \int \frac{\sqrt{1 - \sin x}}{(1 + \cos x)} e^{-x/2} dx$	1/2
	$= \int \frac{\sqrt{1 - \sin(-2t)}}{\{1 + \cos(-2t)\}} e^t (-2dt) = -2 \int \frac{\sqrt{1 + \sin 2t}}{(1 + \cos 2t)} e^t dt$	1/2
	$=-2\int \frac{\sqrt{\cos^2 t + \sin^2 t + 2\sin t \cos t}}{2\cos^2 t} e^t dt$	1/2
	$= -2\int \frac{(\cos t + \sin t)}{2\cos^2 t} e^t dt = -\int (\sec t + \sec t \tan t) e^t dt$ $= -\int e^t f(t) + f'(t) dt, \text{ where } f(t) = \sec t$	1/2
	$= -e^{t} f(t) + C = -e^{-x/2} \sec\left(\frac{-x}{2}\right) + C = -e^{-x/2} \sec\frac{x}{2} + C.$	1
28.	Putting sin $x = t$ and $\cos x dx = dt$, we get $I = \frac{\cos x}{(1 - \sin x)(2 - \sin x)} dx = \int \frac{dt}{(1 - t)(2 - t)}.$	1/2
	Let $\frac{1}{(1-t)(2-t)} = \frac{A}{(1-t)} + \frac{B}{(2-t)}$ $\Rightarrow 1 = A(2-t) + B(1-t)$ (i)	1/2
	Putting $t = 1$ in (i), we get $A = 1$. Putting $t = 2$ in (i), we get $B = -1$. $\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$	1/2
	$\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx = \int \frac{dt}{(1-t)(2-t)}$	1/2
	$= \int \left\{ \frac{1}{(1-t)} - \frac{1}{(2-t)} \right\} dt = \int \frac{dt}{(1-t)} - \int \frac{dt}{(2-t)}$ $= -\log 1-t + \log 2-t + C$ $= \log\left \frac{2-t}{1-t}\right + C = \log\left \frac{2-\sin x}{1-\sin x}\right + C.$	1
29.(a)	The given differential equation can be written as $\frac{dy}{dx} = \frac{1+y^2}{(tan^{-1}y-x)} \text{ or } \frac{dx}{dy} = \frac{(tan^{-1}y-x)}{1+y^2}$	
	$\Rightarrow \frac{dx}{dy} + \frac{x}{1+y^2} = \frac{(tan^{-1}y)}{1+y^2} \text{ linear in x where P} = \frac{1}{1+y^2}, Q = \frac{(tan^{-1}y)}{1+y^2}$ $I.F. = e^{tan^{-1}y}$	½+½ ½
	GS is $x e^{tan^{-1}y} = (tan^{-1}y) e^{tan^{-1}y} - e^{tan^{-1}y} + C$ or $x = (tan^{-1}y) - 1 + C e^{-tan^{-1}y}$	1

	When x = 0, y = 0 , C = 1	
	So PS is $x = (tan^{-1}y) + e^{-tan^{-1}y} - 1$	1/2
29.(b)	OR	
	The given differential equation can be written as	
	$\int_{\mathcal{U}} \left[xy \cos(\frac{y}{x}) + y^2 \sin(\frac{y}{x}) \right]$	
	$\frac{dy}{dx} = \frac{\left[xy\cos(\frac{y}{x}) + y^2\sin(\frac{y}{x})\right]}{\left[xy\sin(\frac{y}{x}) - x^2\cos(\frac{y}{x})\right]}$	
		1/2
	On showing this is homogenious equation	/2
	To solve it, we make the substitution	
	y = vx	
	dv: t.	1/2
	or $\frac{dy}{dx} = y + x \frac{dy}{dx}$	
	dx dx	
	1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	or $v + x \frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}$	
	$dx = v \sin v - \cos v$	1/2
	Spite Spite Spite	
	or $x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v - \cos v}$	
	$dx = v \sin v - \cos v$	
	Solve by variable sepration	1/2
	$\log \sec v - \log v = 2\log x + \log C_1 $	/2
	$\log \sec v - \log v = 2\log x + \log C_1 $	
	(v)	
	$\frac{\sec\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)(x^2)} = C \text{ where, } C = \pm C_1$	
	$CXY = C$ where, $C = \pm C$	
	$\left(\frac{y}{z}\right)(x^2)$	
	(w)	
	$\sec\left(\frac{y}{x}\right) = C xy$	
	(x)	1
	which is the general solution of the given differential equation.	
	which is the general solution of the given differential equation.	
30.	On correct graph of the system of linear inequalities	1
30.	On correct corner points A, B, C and D are (0, 10), (5, 5), (15,15) and (0, 20)	1/2
		/2
	1 A A	
	4/	
	25	
	(25] D(0,20)	1/2
	15 C (15,15)	/2
	NA A	
	(0,10) 5 B(5,5) $(60,0)$	
	$X' \leftarrow X' + $	
	5 1 20 35 50	
	Y' = 60	
	$(10,0) \begin{array}{c} x \\ x + y = 10 \end{array}$	
	x 1 y = 10	

	Corner Point Corresponding value of $Z = 3x + 9y$,	
	A (0, 10) 90		
	B (5, 5) 60 (Minimum)		
	C (15, 15) 180 (Maximum) (Multiple o	ntimal	1
	D (0, 20) 180 (Maximum) solutions)	pumai	_
	Minimum value of Z is 60 at the point B (5, 5) of the feasible:	region	
	The maximum value of Z on the feasible region occurs at the		
	D (0, 20) and it is 180 in each case.		
31.(a)		1	
	Since the event of raining today and not raining today are	-	
	the probability that it rains today is 0.4 then the probabili	ty that it does not rain today is	
	1- $0.4 = 0.6 \implies P_1 = 0.6$		
	If it rains today, the probability that it will rain tomorr	row is 0.8 then the probability	
	that it will not rain tomorrow is . 1- 0.8 = 0.2 \Rightarrow P_2 =	-	
	If it does not rain today, the probability that it will rain	n tomorrow is $0.7 \Rightarrow P_3 = 0.7$	4
	then the probability that it will not rain tomorrow is 1		1
	(i) $P_1 \times P_4 - P_2 \times P_3 = 0.6 \times 0.3 - 0.2 \times 0.7 = 0.04$.		1
	The second of th		1
	(ii) Let E₁ and E₂ be the events that it will rain today an	d it will not rain today respectively.	
	$P(E_1) = 0.4 \& P(E_2) = 0.6$		
	A be the event that it will rain tomorrow. $P\left(\frac{A}{E_1}\right) = 0.8$	$3 \& P\left(\frac{A}{g_2}\right) = 0.7$	
	We have, $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) = 0.4$	× 0.8 + 0.6 × 0.7 = 0.74.	
	1000 1000	Profestion tendendes automobile (2010 ed 44 February)	1
	The probability of rain tomorrow is 0.74.		
	OR		
31.(b)	Let S denote the success (getting a '6') and F denote the failur	re (not getting a '6').	
	Thus, $P(S) = \frac{1}{6}$ and $P(F) = \frac{5}{6}$		1/2
	$P(A \text{ wins in the first throw}) = P(S) = \frac{1}{6}$		1/2
	A gets the third throw, when the first throw by A and second t		
	Therefore, $P(A \text{ wins in the 3rd throw}) = P(FFS) = P(F)P(F)P(F)$	$S = \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = (\frac{5}{6})^2 \times \frac{1}{6}$	1/2
	P(A wins in the 5th throw) = P (FFFFS) = $(\frac{5}{6})^4 \times \frac{1}{6}$ and so		12
	Hence, P(A wins) = $\frac{1}{6} + (\frac{5}{6})^2 \times \frac{1}{6} + (\frac{5}{6})^4 \times \frac{1}{6} + \dots$		1/2
	1		
	$=\frac{\frac{1}{6}}{1-\frac{25}{36}}=\frac{6}{11}$		
	30		1
	$P(B \text{ wins}) = 1 - P(A \text{ wins}) = \frac{5}{11}$		

(Long answer type questions (LA) of 5 marks each)

	(Long answer type questions (LA) or 5 marks each)	1 1
32.	r / / / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$	
	Than the product AP is	
	Then the product AB is [1 0 0]	1
	$AB = 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 8I$	_
	$\Rightarrow B^{-1} = \frac{1}{8}A$	1/2
	$\Rightarrow B^{-1} = \frac{1}{8}A$ $\Rightarrow B^{-1} = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$	1/2
	[4]	1
	Write equations in matrix form such a way that coff. Matrix = B and $C = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$	_
	Solving the equation $X = B^{-1}C$, we get	
	x = 3, y = -2, z = -1	2
33.(a)	r r	
	Let r , h and \propto be as in Fig. Then $\tan \propto = \frac{r}{h}$	
		1
	Given $\tan \alpha = 0.5$ so $\frac{r}{h} = 0.5$	1/2
	\Longrightarrow $r = \frac{h}{2}$	
	Let V be the volume of the cone. Then $V = \frac{1}{3}\pi r^2 h = \frac{\pi h^3}{12}$	1/2
	Therefore $\frac{dV}{dt} = \frac{\pi h^2}{4} \frac{dh}{dt}$	1
	Given $\frac{dV}{dt} = 5 \text{ m}^3/h$ and $h = 4 \text{ so } \frac{dh}{dt} = \frac{5}{4\pi} \text{ or } \frac{35}{88} \text{ m/h}$	
	Given $\frac{1}{dt} = 3 \text{ in /n}$ and $n = 4 \text{ so } \frac{1}{dt} = \frac{1}{4\pi} \text{ or } \frac{1}{88} \text{ in/n}$	2
	OR	
	$f(x) = \sin x + \cos x,$	1/2
33.(b)	so $f'(x) = \cos x - \sin x$	1
	Now $f'(x) = 0$ gives $\sin x = \cos x$ which gives that $x = \frac{\pi}{4}$, $\frac{5\pi}{4}$ as $0 \le x \le 2\pi$	
	The points $x = \frac{\pi}{4}$, $\frac{5\pi}{4}$ divide the interval $[0, 2\pi]$ into three disjoint intervals namely $[0, \frac{\pi}{4})$, $(\frac{\pi}{4}, \frac{5\pi}{4}), (\frac{5\pi}{4}, 2\pi]$	1
	$f'(x) > 0$ if $x \in [0, \frac{\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi]$ so $f(x) = \sin x + \cos x$ is strictly increasing in $[0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{4})$	1+1/2
	$(\frac{5\pi}{4}, 2\pi]$	
	(4,)	4
	$f'(x) < 0$ if $x \in (\frac{\pi}{4}, \frac{5\pi}{4})$ so $f(x) = \sin x + \cos x$ is strictly decreasing in $(\frac{\pi}{4}, \frac{5\pi}{4})$	1

	$\frac{x-1}{32/7} = \frac{y-2}{-34/7} = \frac{z-1}{12/7} \Rightarrow \frac{x-1}{16} = \frac{y-2}{-17} = \frac{z-1}{6}.$	1
	OR	
35.(b)	The given equation of line can be written as $\vec{r} = \hat{\imath} + (-2)j + (3)\hat{k} + t(-\hat{\imath} + j + (-2)\hat{k}) \text{ and } \\ \vec{r} = \hat{\imath} + (-1)j - \hat{k} + s(\hat{\imath} + (2)j - (2)\hat{k}) \\ \text{So } \overrightarrow{a_1} = \hat{\imath} + (-2)j + (3)\hat{k}, \overrightarrow{a_2} = \hat{\imath} + (-1)j - \hat{k} \\ \overrightarrow{b_1} = -\hat{\imath} + j + (-2)\hat{k}, \qquad \overrightarrow{b_2} = \hat{\imath} + (2)j - (2)\hat{k} \\ \overrightarrow{b_1} \times \overrightarrow{b_2} = 2\hat{\imath} - 4j - 3\hat{k} \\ \overrightarrow{a_2} - \overrightarrow{a_1} = j - 4\hat{k} \\ \text{SD} = \frac{8}{\sqrt{29}} \\ \text{So the given lines does not intersect to each other}$	1/2 1/2 1 1 1/2 1
		1/2

SECTION E (Case Studies/Passage based questions of 4 Marks each)

36.	450	Number of states is a seed to the seed of the set Buck 31(B=G)	
30.	(i)	Number of relations is equal to the number of subsets of the set $B \times G = 2^{n(B \times G)}$ = $2^{n(B) \times n(G)} = 2^{3 \times 2} = 2^{6}$	1
		(Wheren(A) denotes the number of the elements in the finite set A)	
	(ii)	Smallest Equivalence relation on G is $\{(g_1, g_1), (g_2, g_2)\}$	1
	(iii)	(a) (A) reflexive but not symmetric =	
		$\{(b_1,b_2),(b_2,b_1),(b_1,b_1),(b_2,b_2),(b_3,b_3),(b_2,b_3)\}.$	
	So	the minimum number of elements to be added are	1
	(b_1)	$(a_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)$	_
	{No	ote: it can be any one of the pair from, (b_3, b_2) , (b_1, b_3) , (b_3, b_1) in place of	
	$(b_2$, b ₃) also}	
	(B)	reflexive and symmetric but not transitive =	
	{(b	$\{(a_1,b_2),(b_2,b_1),(b_1,b_1),(b_2,b_2),(b_3,b_3),(b_2,b_3),(b_3,b_2)\}.$	1
	So	the minimum number of elements to be added are	
	(\boldsymbol{b})	$(a_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2)$	
		OR	

	One-one and onto function	
	$x^2 = 4y$. let $y = f(x) = \frac{x^2}{4}$	1/2
	Let $x_1, x_2 \in [0, 20\sqrt{2}]$ such that $f(x_1) = f(x_2) \Rightarrow \frac{x_1^2}{4} = \frac{x_1^2}{4}$ $\Rightarrow x_1^2 = x_2^2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 0 \Rightarrow x_1 = x_2 \text{ as } x_1, x_2 \in [0, 20\sqrt{2}]$ $\therefore f$ is one-one function Now, $0 \le y \le 200$ hence the value of y is non-negative and $f(2\sqrt{y}) = y$	1/2
	∴ for any arbitrary $y \in [0, 200]$, the pre-image of y exists in $[0, 20\sqrt{2}]$ hence f is onto function.	1
37.	(i) Let E denote the event that the person selected is actually having HIV and A the event that the person's HIV test is diagnosed as +ive. We need to find $P(A E)$. $P(A E) = P(Person tested as HIV+ive given that he/she is actually having HIV) = 90\% = 90/100 = 0.9 (ii)(a) We need to find P(E A). Also F denotes the event that the person selected is actually not having HIV Then P(E) = 0.001, P(F) = 1 - P(E) = 0.999, P(A E) = P(Person tested as HIV+ive given that he/she is actually having HIV) = 90\% = 90/100 = 0.9$	2
	$P(A F) = P(Person tested as HIV + ive given that he/she is actually not having HIV) \\ = 1\% = 0.01 \\ Now, by Bayes' theorem \\ P(E A) = \frac{P(E)P(A E)}{P(E)P(A E) + P(F)P(A F)}$	1
	$=\frac{90}{1089}=0.083 \text{ approx.}$	1

1

1

1

2

- 38. (i) Let length of the side of square base be x cm and height of the box be y cm \therefore volume of box, $V = x^2y = 1024$
 - (ii) Let C denotes the cost of the box

$$C = 2x^2 \times 5 + 4xy \times 2.5$$

$$\Rightarrow C(x) = 10x^2 + \frac{10240}{x}$$

(iii)(a) On differentiating both sides w.r.t. x we get

$$C'(x) = 20x - \frac{10240}{x^2}$$
$$C''(x) = 20 + \frac{20480}{x^3}$$

$$y''(x) = 20 + \frac{20480}{x^3}$$

Now,

$$C'(x) = 0 \Longrightarrow x = 8$$

As, C''(8) > 0. So, at x= 8 the function has minimum value.

For x=8 cost is minimum and the corresponding least cost of the box is:

$$C(8) = 10 \times 64 + \frac{10240}{8} = 1920$$

∴ least cost =Rs 1920

OR

(iii)(b) Dimensions of required box are $8(2^{1/3})$ cm, $8(2^{1/3})$ cm and $8(2^{1/3})$ cm.