केंद्रीय विद्यालय संगठन, बेंगलुरु संभाग

KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री-बोर्ड परीक्षा २०२५-२६

FIRST PRE-BOARD EXAMINATION-2025-26

Class: X
Subject: MATHEMATICS (BASIC)
Max Marks: 80
Time: 3 hrs

CODE: 241 MARKING SCHEME

	SECTION - A				
	(Multiple Choice Questions)				
1.	(b) 315	1			
2.	(d) 2	1			
3.	(b) $(x-3)(x+2)=x(4x+5)$	1			
4.	$(d)\sqrt{2}$	1			
5.	(a) a= -1, b=15	1			
6.	(c) equilateral	1			
7.	(b) 18 m	1			
8.	(a) 4	1			
9.	(c) 1	1			
10.	(d) 115 ⁰	1			
11.	(c) 24 cm	1			
12.	(d) 12 cm	1			
13.	(a) 0^0	1			
14.	(a) $\frac{11}{26}$	1			
15.	$(d) \frac{\theta}{720} \times 2\pi R^2$	1			
16.	(c) 30	1			
17.	(a)20	1			
18.	(b) 0.38	1			
19.	(c) Assertion is true, Reason is false.	1			
20.	(d) Assertion is false, Reason is true.	1			
	SECTION B				
21.	(a) $5x7x11x13 + 7x11$ = $7x11(5x13+1)$ = $7x11x11x2x3$	1			

	Eastonisation of number contains more than one mime. So by fundamental	
	Factorisation of number contains more than one prime. So by fundamental theorem of arithmetic, this is a composite number.	
	OR	
	(b) $(12)^n = (2x2x3)^n = 2^{2n} x3^n$	1
	Primes in factorisation of (12) ⁿ are 2 and 3. To end in digit 0 prime	1
	factorization of (12) ⁿ should also contain the prime 5. Therefore,	
	there is no natural number n for which (12) ⁿ ends with digit zero.	
22.	To find the zeros , $p(x) = 0$:	1
	$x^{2} + 7x + 12 = 0$	
	(x+3)(x+4)=0	
	x=-3, x=-4	
	To verify the relationship between zeros and coefficients	
	a = 1, b = 7, c = 12	
	Sum of zeros: $(-3) + (-4) = -7$ $-\frac{b}{a} = -\frac{7}{1} = -7$	
	$-\frac{b}{-} = -\frac{7}{7} = -7$	1/-
	u 1	1/2
	Product of zeros: $(2) \times (4) = 12$	
	$\begin{pmatrix} -3 \end{pmatrix} \wedge \begin{pmatrix} -4 \end{pmatrix} = 12$ $c = 12$	1/2
	$(-3) \times (-4) = 12$ $\frac{c}{a} = \frac{12}{1} = 12$	/ 2
22	u I	1/
23.	$k.x.(x-3) +9 = 0 \text{ or } kx^2 -3kx + 9=0$ For equal roots, $b^2 - 4ac = 0$	1/2
		1/2 1
24.	$9k^2$ - $36k$ =0 or k =0(rejected), k =4 Given: Vertices $A(3,2)$, $B(1,0)$, and midpoint of diagonals $O(2,-5)$.	1
47.	Let the other two vertices be $C(x_1, y_1)$ and $D(x_2, y_2)$.	
	Let the other two vertices be $C(x_1, y_1)$ and $D(x_2, y_2)$.	
	Mid point of AC is O	
	212 212	1
	$\frac{3+x_1}{2}=2, \frac{2+y_1}{2}=-5$	1
	$x_1 = 1, y_1 = -12$	
	Mid point of BD is O $x_1 = 1, y_1 = 12$	
	$1+x_2$ $0+y_2$ 5	
	$\frac{1+x_2}{2}=2, \frac{0+y_2}{2}=-5$	1
	$x_2 = 3, y_2 = -10$	
	So C is (1, -12), D is (3, -10)	
25	$(a) \sin(A + B) = 1 \cos(A + B) \sin(00)$	1/
25.	(a) $\sin (A + B) = 1 \text{ or } \sin (A + B) = \sin 90^{0}$ $A+B = 90^{0}$ (1)	1/2
		1/2
	$\cos (A - B) = \frac{\sqrt{3}}{2} \text{ or } \cos (A - B) = \cos 30^{\circ}$	/2
	A - B = 30(2)	1
	On solving equation 1 and 2 we get $A=60^{\circ}$, $B=30^{\circ}$	
	OR	
	(b)	
	288550 + 188518 + 1886868 + 18868 + 18868 + 188686 + 18868 + 18868 + 18868 + 18868 + 18868 + 18868 + 18868 + 18868	
		1
	$2 \times 0 + 4 \times \frac{1}{2} + 3 + 3 \times \frac{4}{3} + 1$	1
	$= \frac{2 \times 0 + 4 \times \frac{1}{2} + 3 + 3 \times \frac{4}{3} + 1}{3 \times 2 - \frac{7}{2} \times 2 + 2 \times 2 - 1} = 10/2 = 5$	
		Ì

	SECTION C	
26.	Let's assume $\sqrt{3}$ is a rational number	
	$\Rightarrow \sqrt{3} = p/q$ where p and q are coprime integers and $q \neq 0$.	1/2
	$\Rightarrow \sqrt{3} \neq p \dots (1)$.	
	Take squares on both sides of equation (1).	1/2
	$\Rightarrow 3q^2 = p^2$	
	3 is a prime number that divides p^2 , so 3 divides p .	1/2
	\Rightarrow 3 is a factor of p.	
	Therefore, p is a number that divides q.	
	Let $p = 3a$ where a is a whole number.	1/2
	Substitute the value of p in equation (1)	
	$\Rightarrow 3q^2 = (3a)^2$	
	$\Rightarrow 3q^2 = 9a^2$	
	$\Rightarrow q^2 = 3a^2$	1/2
	$\Rightarrow q^2 / 3 = a^2 \dots (2)$, <u>-</u>
	3 is a prime number that divides q^2 , so 3 divides q	
	\Rightarrow Since 3 is a factor of q.	
	<u> </u>	
	From equation 1 and 2, we can conclude that	
	3 is a factor of p, 3 is a factor of q.	1/2
	So 3 is a factor of both p and q.	/ 2
	This leads to the contradiction to our assumption that p and q are co-primes	
27.	The first 16 multiples of 7 are: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98,	1/2
	105, 112	
	This forms an Arithmetic Progression (AP) where:	
	First term (a) $= 7$	1
	Common difference (d) = 7	
	Number of terms $(n) = 16$	
	$Sn = n/2 \times [2a + (n-1)d]$	1/2
	$= 16/2 \times [2(7) + (16 - 1)(7)]$	
	$= 8 \times [14 + 15(7)]$	
	$= 8 \times [14 + 105]$	
	$= 8 \times 119$	1
	= 952	•
28.	(a) Let x be the price of one pencil and	
_0,	y be the price of one pen.	
	Alok's purchase: $2x + 3y = 40$	1/2
	Rahul's purchase: $x + 2y = 25$	1/2
	Solution is $(5, 10)$	1
	The price of one pencil is Rs.5	1
	and of one pen is Rs. 10	1
	and of one pen is its. To	
	OR	
	.41	
	(b Let us assume that Rohan's present age $= X$ years and	
	Grandfather's present age $= Y$ years	
	ATQ, X + Y = 88 (equation 1)	1
	Y - 12 = 7(X - 12)	1
	$7X - Y = 72 \dots (equation 2)$	1
	Solving the equations:	
	X = 20 years	
	Y = 68 years	
	Answer: Rohan is 20 years old and his grandfather is 68 years old.	

20	T .1 '	C' DOD	<u> </u>	·				
29.	AS = AP	en figure, P, Q, R, S (The tangents drav circle are equal.)	-		D	R C	;	
	$\angle SOA = \angle$	$\angle POA = \angle 1 = \angle 2$ (_					1
	from a poi angles at t	int outside of the ci	rcle, su	btend equal	R	76/5	\sqrt{g}	
	Similarly,				$S = -\frac{3}{1}$	* 04		
		$\angle 5 = \angle 6, \angle 7 = \angle 8$				2,0	\times	
	Since com We have,	pplete angle is 360°	at the	centre,		<u>i</u> /		
	· · · · · · · · · · · · · · · · · · ·	- ∠3 + ∠4 + ∠5 + ∠	<u>∠</u> 6 + ∠7	+ ∠8 =	Α	Р	В	1
	360°	0	00 (- ··) () (40 · 42 ·	.(7)	2600		
	,	$8 + \angle 4 + \angle 5$) = 360 - $\angle 4 + \angle 5$ = 180° (6		,	,	= 300°		
	From above	,	o1) — -		_, 100			
	$ \angle 1 + \angle 8 =$ = $\angle COD$	\geq \angle AOD, \angle 4 + \angle 5	=∠BO	\mathbb{C} and $\angle 2 + \angle$	∠3 = ∠AOB	, ∠6 + ∠´	7	1
	Thus we h	nave,						
		$\angle BOC = 180^{\circ} \text{ (or)}$						
		d ∠BOC are angles ateral circumscribin				vo is 180	0	
	Hence pro		ng a on	ore and the st	um or the tv	VO 15 100	•	
30.	tan θ	cotA						
30.	$\frac{\tan \theta}{1-\cot \theta}$	$\frac{1}{1-\tan\theta} = 1$	l + sec	eθ cosecθ				
	= tan	$\frac{\theta}{\tan \theta} + \frac{1/\tan \theta}{1 - \tan \theta}$	=					1/2
				. 0				
	$= \tan^2 \theta / (\tan \theta - 1) + 1 / \tan \theta (1 - \tan \theta)$ $= (\tan^3 \theta - 1) / \tan \theta (\tan \theta - 1)$							1/2
	$= (\tan^3 \theta - 1) / \tan \theta (\tan \theta - 1)$ $= (\tan \theta - 1) (\tan^2 \theta + 1 + \tan \theta) / \tan \theta (\tan \theta - 1)$							1
	$= (\tan \theta - 1)(\tan^2 \theta + 1 + \tan \theta)/\tan \theta (\tan \theta - 1)$ $= (\tan^2 \theta + 1 + \tan \theta)/\tan \theta$							
	$= (\tan^2 \theta + 1 + \tan \theta)/ \tan \theta$ $= (\sec^2 \theta/\tan \theta + 1)$							1/2
	= 1 + se	$= 1 + \sec\theta \csc\theta$						
31.	(a)							
	(4)	Class Interval	f	X	d=x-A	fd		
		65-68	2	66.5	-9	-18		1 ½
		68-71	4	69.5	-6	-24		
		71-74	3	72.5	-3	-9		
		74-77	8	75.5=A	0	0		
		77-80	7	78.5	3	21		
		80-83	4	81.5	6	24		
		83-86	2	84.5	9	18		
		Total	30			12		
<u> </u>	1	<u> </u>	l	1	I	1		

	The m	= 75.5+ 0.4 =75.9 ean heartbeats per mi		men is 75.9	1/2	
	(b) _	OR		_		
		Class Interval	Frequency	Cumulative Frequency		
		0-5	12	12	1	
		5-10	P	P+12	1	
		10-15	12	P+24		
		15-20	15	P+39		
		20-25	q	P+q+39		
		25-30	6	P+q+45		
		30-35	6	P+q+51		
		35-40	4	P+q+55		
	p + or p + 16= 1 Or p=	Median=1 + $\frac{\frac{N}{2} - cf}{f}$ 15, N= 70, cf = p+ q + 55 = 70 q = 15(eq1) 5 +[(35-p-24)/15] =8 eq 1, q=7	+24, f = 15 , h=	= 5	1/2 1/2 1	
			SECTION I)		
32.	(a) (i)	Let the width of the k	kite be x.		1	
		Then length = $x + 7$ ATQ, $x (x + 7) = 12$	20		1	
	$X^2 + 7x - 120 = 0$ D= $b^2 - 4ac = 7^2 - 4 \times 1 \times (-120) = 529 > 0$					
	(ii)	So, it is possible to $X^2 + 7x - 120 = 0$	design a kite.		1	
	` ′	$X^2 + 15x - 8x - 120 =$	=0			

	OR	
	(b) Let the original speed of the train be x km/h.	
		1
	ATQ, $T_2 - T_1 = 3$	1
	$\frac{480}{480} - \frac{480}{480} = 3$	1
	$\begin{array}{ccc} x-8 & x \\ X^2-8x-1280=0 \end{array}$	1 1
		1
	(x-40) (x+32) = 0	1
	X=40, $x=-32$ (rejected)	1
	The original speed of the train is 40 km/h.	
22	77.1 6.1 1.1 15 10 25 525 2	1
33.	Volume of the cuboid = $15 \text{ cm} \times 10 \text{ cm} \times 3.5 \text{ cm} = 525 \text{ cm}^3$.	1
	For cone, r=0.5cm, h=1.4cm	4.1/
	volume of one conical depression = $(1/3) \times \pi \times r^2 \times h$.	1 ½
	$= 0.366 \text{ cm}^3 \text{ approx.}$	
	The total volume of the 4 conical depressions = 4×0.366 cm ³ ≈ 1.464	1
	cm ³ .	1
	The volume of wood in the pen stand = Volume of cuboid - Total volume	
	of conical depressions = $525 \text{ cm}^3 - 1.464 \text{ cm}^3 \approx 523.536 \text{ cm}^3$.	
34.	(i) Fig, Given To Prove, Construction	1
	Correct Proof	2
	(ii) In the given fig., DE AC	1/2
	BE/EC=BD/DA(1)	
	Again DC AP	
	So BC/CP= BD/DA(2)	1/2
	From eq 1 and 2,	
	BE/EC= BC/CP.	1
	B E C P	
35.	(a) Let BC=x and DC= h	Fig-1
	Tan $45^0 = h/x$	
	h = x(1)	1 1/2
	Tan $30^0 = h/(x+200)$	
	h	
	$1/\sqrt{3} = h/(x+200)$	
	$X + 200 = h\sqrt{3}$ (2)	1 1/2
	On solving as 1 and as 2	
	On solving eq.1 and eq.2, $h = 100(\sqrt{3}+1)$ C x B 200 m A	
	= 100(1.732 + 1)	1
	=273.2m	_
	OR	
	(b) EF= DF – DE= 88.2-1.2=87	
	(6) 21 21 22 00.2 1.2 07	1/2
	In triangle AHG, tan60 ⁰ = GH/AH	Fig-1
	$\sqrt{3}=87/AH \text{ or } AH = 87/\sqrt{3} \dots(1)$	1.51
	In triangle AEF, $\tan 30^0 = \text{EF/AE}$	1 1/2
	1/ $\sqrt{3}$ = 87/AE or AE= 87 $\sqrt{3}$	1 /2
	(2)	
	From eq.1 and eq.2, $HE = AE - AH$	
	$= 87\sqrt{3} - 87/\sqrt{3}$	1
	- 0/ \\ \) - 0/ \\ \\ \)	1
	$= 8/\sqrt{3} - 29\sqrt{3}$ B C D $= 58\sqrt{3}$ m	
		1
	Distance travelled by the balloon= $58\sqrt{3}$ m	1

	SECTION E	
36.	(i) Point <i>R</i> that divides <i>PQ</i> internally in ratio 2: $1(\text{so } PR: RQ = 2: 1)$ Using the internal division formula if $AP: PB = m: n$,	
	$X = (m_1x_2 + m_2x_1)/m_1 + m_2$ $Y = (m_1y_2 + m_2y_1)/m_1 + m_2$	1
	$X = \frac{2X9 + 1X3}{3} = \frac{21}{3} = 7, Y = \frac{2X8 + 1X2}{3} = \frac{18}{3} = 6.$	
	R(7,6).	1
	(ii) Midpoint Mof $PQ : (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}).$ = $(\frac{3+9}{2}, \frac{2+8}{2}) = (6,5).$	1
	(iii) (A) Length of bridge PQ in metres Distance $PQ = \sqrt{(9-3)^2 + (8-2)^2} = \sqrt{6^2 + 6^2} = \sqrt{36 + 36} = \sqrt{72} = 6\sqrt{2}$ units.	2
	Convert to metres: $6\sqrt{2}$ units × 5m/unit = $30\sqrt{2}$ m. OR	
	(B) $P(3,2)$ and $R(7,6)$.	
	Midpoint $S = (\frac{3+7}{2}, \frac{2+6}{2}) = (5,4).$	
	Distance $SQ = \sqrt{(9-5)^2 + (8-4)^2} = \sqrt{4^2 + 4^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$ units.	
	In metres: $4\sqrt{2}$ units $\times 5$ m/unit = $20\sqrt{2}$ m	
37.	(i) Area swept by the hour hand= Area of sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$	1
	$= (90/360) \times 3.14 \times 15 \times 15$ $= 176.625 \text{ m}^2$	
	(ii) Area of triangle = $\frac{1}{2}r^2 \sin \theta$ = $\frac{1}{2} \times 15^2 \times \sin 90^\circ$	1
	= 112.5 m ² (iii) Area of minor segment = Area of sector — Area of triangle	
	$= 176.625 - 112.5 = 64.125 \text{ m}^2$ Total cost of decoration	2
	Cost = Area of minor segment \times 200 = 64.125 \times 200 = 12,825 $\overline{}$	
	(B) Arc length of the sector is: $L = \frac{\theta}{360^{\circ}} \times 2\pi r$	
	$= \frac{\frac{90}{90}}{360} \times 2 \times 3.14 \times 15 = 23.55 \text{m}$	

38.	(i)	Favourable outcomes-(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)	
		Total outcomes= 36	1
		P (E) = Favourable Outcome/Total outcome=6/36=1/6	
	(ii)	Favourable Outcomes=(1, 1), (2, 2), (3, 3), (4, 4), (5, 5) (6, 6)	1
		P(E) = 6/36 = 1/6	
	(iii)	(A) Favourable Outcomes=(6, 1), (6, 2), (6, 3), (6, 4), (6, 5) (6, 6), (1,	
		6), (2, 6), (3, 6), (4, 6), (5,6)	2
		P(E) = 11/36	
		OR	
		(B) Probability of getting sum as 7 P(E)=1/6	
		P(sum not 7) = 1 - 1/6 = 5/6	
