KENDRIYA VIDYALAYA SANGATHAN, CHENNAI REGION FIRST PRE-BOARD EXAMINATION: 2024-2025 MATHEMATICS STANDARD (041)

ANSWER KEY

Time Allowed: 3

CLASS :X Hrs.

Maximum Marks: 80

	SECTION A	mum Marks; 80
Q. No.	Section A consists of 20 questions of 1 mark each.	Marks
1	d, a=0,b= -6	1
2	both negative	1
3	c, 3	1
4	a,4	1
5	d,6	1
6	a, (3,-10)	1
7	a,2	1
8	b,0	1
9	c, $\frac{3}{4}$	1
10	d,10 cm	1
11	b, parallel	1
12	d, 155°	1
13	d, 5:1	1
14	a, 9 units	1
15	d, 4	1
16	b, 315	1
17	d, $\frac{3}{10}$	1
18	b, $\frac{6}{23}$	1
19	a	1

20	.c	1
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21	Let us assume that $2+5\sqrt{3}$ is a rational number.	
	Thus, $2+5\sqrt{3}$ can be represented in the form of $\frac{p}{q}$, where p and q both are	1/2
	integers, $q \neq 0$, p and q are co-prime numbers.	
	$2+5\sqrt{3}=\frac{p}{q}$	
	$\Rightarrow 5\sqrt{3} = rac{p}{q} - 2$	1/2
	$egin{aligned} & \Rightarrow 5\sqrt{3} = rac{p}{q} - 2 \ & \Rightarrow 5\sqrt{3} = rac{p-2q}{q} \ & \Rightarrow \sqrt{3} = rac{p-2q}{5q} \end{aligned}$	1/2
	$\Rightarrow \sqrt{3} = \frac{1}{5q}$	
	since, $\frac{p-2q}{5q}$ is rational $\Rightarrow \sqrt{3}$ is rational.	
	But, it is given that $\sqrt{3}$ is an irrational number.	1/2
	Therefore, our assumption is wrong.	
	Hence, $2+5\sqrt{3}$ is an irrational number.	
	(or)	
		1/2
		/ 2
		1/2
		1/2
		1/2

	Let us assume that 3√7 is rational.	
	3√7 = <u>a</u>	
	317 - b	
	Rearranging, we get $\sqrt{7} = \frac{a}{3b}$	
	Since 3, a and b are integers, $\frac{a}{3b}$ can be written in the form of $\frac{p}{a'}$ so $\frac{a}{3b}$ is rational,	
	and so √7 is rational.	
	But this contradicts that $\sqrt{7}$ is irrational. So, we conclude that $3\sqrt{7}$ is irrational.	
22	distance between (a, b) and (- a, - b) is given by	
	$l = \sqrt{(a - (-a))^2 + (b - (-b))^2}$	1/2
	- V (a (a)) + (b (b))	
	$=\sqrt{\left(2a\right) ^{2}+\left(2b\right) ^{2}}$	1/2
	$=\sqrt{4a^2+4b^2}$	1/2
	$=2\sqrt{a^2+b^2}$	1/2
	$= 2\sqrt{a^2 + b^2}$	

		_
23	The point which divides the given line segment lies on y-axis.	
	This implies,	1/2
	Its abscissa is 0.	
	Let the point $(0,y)$ intersects the line segment joining the points $(5,-6)$ and $(-1,-4)$ in	
	the ratio $m:n$.	
	Using section formula, we have,	
	$(x,y)=(rac{mx_2+nx_1}{m+n},rac{my_2+ny_1}{m+n})$	
	Therefore,	1/2
	$(0,y)=\left(rac{m imes(-1)+n imes(5)}{m+n},rac{m imes(-4)+n imes(-6)}{(m+n)} ight)$	
	$\Rightarrow \frac{-m+5n}{m+n} = 0$	
	$\Rightarrow -m+5n=0$	1/2
	$\Rightarrow m=5n$	
	$\Rightarrow \frac{m}{n} = \frac{5}{1}$	1/2
	$\Rightarrow m: n=5:1$	72

24	tan (A + B) = √3	
	⇒ tan(A + B) = tan60°	1/2
	$\Rightarrow (A + B) = 60^{\circ} \dots (i)$	
	$tan (A - B) = \frac{1}{\sqrt{3}}$	1./
	⇒ tan(A - B) = tan30°	1/2
	⇒ (A - B) = 30° (ii)	
	Adding (i) and (ii); we get,	
	A + B + A - B = 60° + 30°	1/2
	2A = 90°	
	A = 45°	
	Putting the value of A in equation (i),	
	45° + B = 60°	
	⇒ B = 60° - 45°	1/2
	⇒ B = 15°	
	Thus, A = 45° and B = 15°	
25	Total balls = $x + 2x + 3x = 24$.	
	⇒ 6x = 24	1/2
	$\Rightarrow x = 4$.	
	(i)Probability of getting red ball = $\frac{x}{24} = \frac{4}{24} = \frac{1}{6}$	1/2
	(ii) Probability of getting blue ball $=$ $\frac{3x}{24} = \frac{3 \times 4}{24} = \frac{1}{2}$	
		1/2
	(iii) Probability of getting neither red nor blue= Probability of getting white ball	
	$=\frac{2x}{24} = \frac{2\times4}{24} = \frac{1}{3}$	1/2
	(or)	/ 2
	Total number of cards=52	
	Total number of aces=4	1
	P(getting an ace)=Number of aces/Total number of cards	
	=4/52 = 1/13	
	P(not an Ace)=1-P(get an Ace) =1-(1/13) =12/13 (ans	1

SECTION C

Section C consists of 6 questions of 3 marks each.

Let us assume that $\sqrt{5}$ is a rational number.

So it can be expressed in the form p/q where p,q are co-prime integers and $q \neq 0$

1/2

 $\frac{1}{2}$

 $\frac{1}{2}$

$$\Rightarrow \sqrt{5} = \frac{p}{q}$$

26

On squaring both the sides we get,

$$\Rightarrow 5 = p^2/q^2$$
 $\Rightarrow 5q^2 = p^2$
 $p^2/5 = q^2$

So 5 divides p^2 , p is a multiple of 5

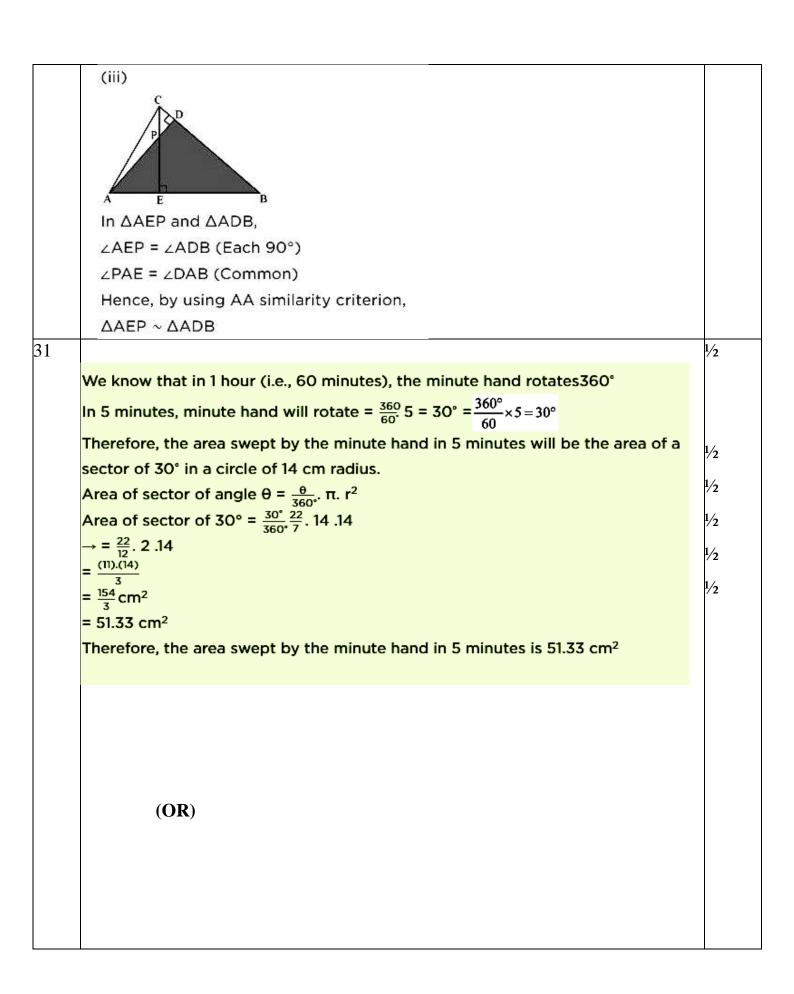
$$\Rightarrow p = 5m$$

 $\Rightarrow p^2 = 25m^2 - (ii)$

From equations (i) and (ii), we get,

$$5q^2 = 25m^2
\Rightarrow q^2 = 5m^2$$

 q^a is a multiple of 5


 \Rightarrow q is a multiple of 5

Thus, p,q have a common factor5. This contradicts our assumption that they are co-primes. Therefore, $\frac{p}{q}$ is not a rational number

Hence, $\sqrt{5}$ is an irrational number.

27	1) Let $f(x) = 3x2 + 8x + (2k + 1)$ and α and β be its zeroes	
	Here $a = 3$, $b = 8$ and $c = 2k + 1$	
	Given,	1/2
	$\alpha = 7\beta$ -(i)	
	Sum of roots, $\alpha + \beta = -b/a$	1./
	$7\beta + \beta = -8/3$ [Using (i)]	1/2
	8β = -8/3	
	$\beta = -1/3$	1/2
	Putting β = -1/3 in (i), we have	1/2
	$\alpha = 7^*-1/3 = -7/3$	
	So, the zeroes are α = -7/3 and β = -1/3	
	Now,	1
	Product of roots = $-1/3^*-7/3$	
	c/a = 7/9	
	(2k + 1)/3 = 7/9	
	2k + 1 = 7/3	
	2k = 4/3	
	k = 2/3	
	So, value of $k = 2/3$	


	On comparing the given equation with $ax^2+bx+c=0$, we get,	
28(i)	$a=2,\;b=k$ and $c=3$	1/2
	As we know, Discriminant : $D=b^2-4ac$	
	$=k^2-4(2)(3)$	
	$=k^2-24$	
	For equal roots,	1/2
	Discriminant $D=0$	
	$\Rightarrow k^2 - 24 = 0$	
	$\Rightarrow k^2 = 24$	1/2
	$\Rightarrow \qquad k=\pm\sqrt{24}$	
	$=\pm2\sqrt{6}$	
	Hence, the value of k is $\pm 2\sqrt{6}$.	
	(::)	
	(ii)	
	The given quadratic equation is $k \times (x - 2) + 6 = 0$.	1/2
	This equation can be rewritten as $kx^2 - 2kx + 6 = 0$.	
	For equal roots, it discriminate, D = 0.	1/
	$b^2 - 4ac = 0$, where $a = k$, $b = -2k$ and $c = 6$	1/2
	$4k^2 - 24k = 0$	
	4k(k-6) = 0	
	K = 0 or k = 6	1/2
	But k cannot be 0, so the value of k is 6.	
	1 $\cot^2 \Lambda$ 1 $\cot^3 \Lambda$	
29	$\frac{1}{\cot A (1-\cot A)} - \frac{\cot^2 A}{(1-\cot A)} = \frac{1-\cot^3 A}{\cot A (1-\cot A)}$	1
	$\cot A(1-\cot A)$ $(1-\cot A)$ $\cot A(1-\cot A)$	1
	$=\frac{\cos ec^2 A + \cot A}{\cos ec^2 A + \cot A}$	
	cot A	
	= 1 + sec A cosec A	1
	- I + Sec A cosec A	

	There are 8 equally spaced ribs in an umbrella, so the umbrella is assumed to be a flat circle.	
	.: The angle between 2 consecutive ribs (θ) = 360°/8 = 45°	1/2
	The radius of the flat circle (r) is given as 45 cm.	
	The area between 2 consecutive ribs of the umbrella = Area of a sector	1/2
	with an angle of $45^{\circ} = \theta/360^{\circ} \times \pi r^2$	1
	= 45°/360° × 22/7 × 45 cm × 45 cm	
	= 1/8 × 22/7 × 45 cm × 45 cm	1/2
	= 22275/28 cm ²	
	= 795.535 cm ²	1/2
	SECTION D	
	Section D consists of 4 questions of 5 mark each.	
32	Let numerator be = x	1/2
	Let denominator be = y	
	so Fraction is = x / y	
	If two is added to both numerator and	
	denominator	
	x + 2 / y + 2 = 9 / 11	
	11(x+2) = 9(y+2)	
	11x + 22 = 9y + 18	
	$11x - 9y + 4 = 0 \dots (1)$	1
	If 3 is added both numerator and	
	denominator	

```
x + 3 / y + 3 = 5 / 6
6(x+3) = 5(y+3)
6x + 18 = 5y + 15
6x - 5y + 3 = 0 \dots (2)
EQUATION =
11x - 9y + 4 = 0 \dots (1)
6x - 5v + 3 = 0 \dots (2)
from equation (1) and equation (2) we get
x = 7
put x = 7 in equation (2)
6(7) - 5y + 3 = 0
45 - 5y = 0
                                                                                  \frac{1}{2}
y = 9
therefore.
Numerator = x = 7
Denominator = y = 9
Hence, fraction is = 7/9
(or)
Let us assume the uniform speed of the train to be x km/h and the time taken
to travel the given distance be t hours.
Then distance can be calculated as follows:
Distance = speed \times time = xt
                                                                                  \frac{1}{2}
Thus, the distance is xt
According to the question,
Condition 1: When the train would have been 10 km/h faster, it would have
taken 2 hours less than the scheduled time.
(x + 10)(t - 2) = xt
xt - 2x + 10t - 20 = xt
-2x + 10t = 20 \dots (1)
Condition 2: When the train would have been slower by 10 km/h, it would
have taken 3 hours more than the scheduled time.
(x - 10)(t + 3) = xt
xt + 3x - 10t - 30 = xt
```

```
3x -10t = 30 ....(2)
Adding equations (1) and (2), we obtain
- 2x + 10t + 3x -10t = 20 + 30
x = 50
Substituting x = 50 in equation (1), we obtain
- 2 × 50 + 10t = 20
- 100 + 10t = 20
10t = 120
t = 120/10
t = 12
Therefore, distance = xt = 50 \times 12 = 600
Hence, the distance covered by the train is 600 km.
```


By looking at the figure, we can rewrite the above as follows, $1/_{2}$ Let the Perimeter of $\triangle APQ$ be P. So P= AP + AQ + PX + XQ From the property of tangents we know that when two tangents are drawn to a circle from the same external point, the length of the two tangents will be equal. Therefore we have, PX =PB XQ = QC1/2 Replacing these in the above equation we have, P = AP + AQ + PB + QCFrom the figure we can see that, AP + PB = AB $\frac{1}{2}$ AQ + QC = ACTherefore, we have, P= AB + AC It is given that AB = 5 cm. Again from the same property of tangents we know that that when two tangents are drawn to a circle from the same external point, the length of the two tangents will be equal. Therefore we have, $\frac{1}{2}$ AB = ACTherefore. AC = 5 cmHence, $\frac{1}{2}$ P = 5 + 5 = 10Thus the perimeter of triangle APQ is 10 cm.

	220 – 260 Total	$\sum f_i = 45$		$\sum f_i x_i = 5640$	
	770 760	3	240	720	
	180 – 220	2	200	400	
	140 – 180	12	160	1920	
	100 – 140	16	120	1920	
	60 – 100	5	80	400	
	20 – 60	7	40	280	1,
(or)	Class interval	No. of bowlers f	Class mark x,	f _i x,	
from $f_1 = 1$ $\Rightarrow f_1$	$f_2 = 257 \rightarrow eq. (f_2 = 257) + eq. (f_3 = 257) + eq. (f_4 = 257) + eq. (f_5 = 257) + eq. (f_6 = 257) $	we get	Class mark v	fx	
	$\frac{730 + f_1 + f_2}{100} = 53$ $\frac{73 + f_1 + f_2}{73 + f_1 + f_2} = 530$				
	-	*1			
	en:- Mean = $\frac{\Sigma x}{\Sigma}$				
3(0)	$+ f_2 = 47 \rightarrow eq.$	(i)			
	+ f ₂ = 100 - 53				
	$S + f_1 + f_2 = 100$				
52000	n:- Σf _i = 100				
Σf_i .	$c_i = 2730 + 30f_1$	+ 70f ₂			
Σf _i =	53 + f ₁ + f ₂				
80-	100 17	90	1530		
60-	80 f ₂	70	70f ₂		
40-	60 21	50	1050		
20-	40 f ₁	30	30f ₁		
0-2		10	150		
Age	(1)	$x_i = \frac{\text{lower limi}}{x_i}$			

Ni. andrew of	Normalian of landing	Communications	
Number of	Number of bowlers	Cumulative	
wickets		Frequency	_
20 - 60	7	7	
60 - 100	5	12	1
100 - 140	16	28	
140 - 180	12	40	
180 - 220	2	42	
220 - 260	3	45	
Median = I +	f ×h		
Median = 100	22.5, cf = 12, f = 16, h = 40 $0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 6.25		
Median = 100 = 100 = 126	$0 + \frac{22.5 - 12}{16} \times 40$ 0 + 26.25 5.25 CTION – E : CASE STUDY BASE		
Median = 100 = 100 = 126 SEC	1 + \frac{22.5 - 12}{16} \times 40 0 + 26.25 6.25 CTION - E : CASE STUDY BASE ion E consists of 3 questions of 4 m		
Median = 100 = 100 = 126 SEC Sect (i) Sum of	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) =0		
Median = 100 = 100 = 126	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) = 0 m of A.P. of Roshan = 88	ark each.	1 1 2
	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) =0	ark each.	1 1 2
	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) = 0 m of A.P. of Roshan = 88	ark each.	1 1 2 1
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) = 0 m of A.P. of Roshan = 88 $0.5 \text{ (or) } 33^{\text{rd}} terms will have the same very support of the same of the s$	ark each.	1 1 2 1 1 1
Median = 100 = 100 = 126	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 6.25 $CTION - E : CASE STUDY BASE$ $ion E consists of 3 questions of 4 m$ $common difference = 3 + (-3) = 0$ $m of A.P. of Roshan = 88$ $5 (or) 33^{rd} terms will have the same very sor) 8m$	ark each.	1 1 2 1 1 2
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$0 + \frac{22.5 - 12}{16} \times 40$ $0 + 26.25$ 0.25 CTION – E : CASE STUDY BASE ion E consists of 3 questions of 4 m common difference = 3 + (-3) = 0 m of A.P. of Roshan = 88 $0.5 \text{ (or) } 33^{\text{rd}} \text{ terms will have the same very small states of } 8m$	ark each.	1 1 1 2 1 1 2