Kendriya Vidyalaya Sangathan, Bhopal Region

Marking Scheme

First Pre Board Exam – (2025-26)

Subject: - Mathematics (SET-3)

Ans.1	(a) 8	1
7 1110. 1	(a) G	mark
Ans.2	(d)51	1
		mark
Ans.3	(c) 4.8cm	1
		mark
Ans.4	(b) -m, m+3	1
		mark
Ans.5	(b)(2,0)	1
		mark
Ans.6	$(c)\sqrt{a^2+b^2}$	1
		mark
Ans.7	(a)30 ⁰	1
		mark
Ans.8	(b) $\frac{2}{7}$	1
		mark
Ans.9	$(b)\frac{ac}{b+c}$	1
1.0		mark
Ans.10	(c)25cm	1
A 11	4.300	mark
Ans.11	(c)20	1
Ana 12	/-\75	mark 1
Ans.12	(a)75m	
Ans.13	(b) 15°	mark 1
Alls.13	(0) 13	mark
Ans.14	(a) 4/3	1
7 1115.1	(a) πS	mark
Ans.15	(d) $25\pi \text{ cm}^2$	1
1113110		mark
Ans.16	(d) 12:1	1
		mark
Ans.17	(d) 0, 8	1
		mark
Ans.18	(a) 2	1
		mark
Ans.19	(a) Both as sertion (A) and reason (R) are true and reason (R) is the correct explanation of assert	1
	ion(A).	mark
Ans.20	$(a)\ Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (B) and reason (B) are true and reason (B) ar$	1
	n(A).	mark
Ans.21	AB = AC (GIVEN)	1 /0
	AD + BD = AF + CF (FROM FIG.)	1/2

	AF+ BE = AF+ CE (AF=AD,CF=CE Tangent drawn from external point to a BE = CE circle equal in lengths)	mark 1 mark 1/2 mark
Ans.22	Finding LCM Of 28 and 32 =224 it is the smallest no. which is exactly divisible by 28 and 32 We require remainder 8 and 12 when devided by 28 and 32 hence the require no, is 224 -8 -12 =204 OR Finding LCM of 40 and 60 =120 mint. 120 mints. = 2hour i.e. both bells' rings together at 11:00 hour again.	1 mark 1 mark 1 mark
Ans.23	Writing CotA = 3/4 Consider B=3k,P=4k and then find H= 5k Find TanA = 4/3 and SinA = 4/5 and Cos A= 3/5 Finding LHS 1-Tan ² A/1+tan ² A = 7/16 Finding RHS Cos ² A-Sin ² A= 7/16	1 mark 1 mark
Ans.24	Writing $2 \pi r = 2r + 16.5$ Writing $2r (\pi-1) = 16.5$ Finding $r = \frac{16.5 \times 7}{2 \times 15} = \frac{7.7}{2} = 3.85$ cm. OR Finding OP= 8 cm Finding area of sector = $\pi r^2 \theta / 360 = \frac{3179}{21}$ cm ² Finding area of Δ OPA = $\frac{1}{2}$ x 15x8 = 60 cm ² Finding area of shaded region = $\frac{3179}{21} - 60 = \frac{1919}{21}$ cm ²	1/2 1/2 1 OR 1 OR 1/2 1/2 1/2 1/2
Ans.25	WRITING $\frac{PS}{SQ} = \frac{PT}{TR}$ hence ST ll QR(by the converse of B.P.T.) writing \angle PST = \angle PQR(1) (corresponding angles) \angle PST = \angle PRQ(2) (given) From eq. 1 st , and 2 nd \angle PQR = \angle PRQ Hence PQ = PR (Sides opposite toequal angles of triangle.	1/2 1/2 1/2 1/2
Ans.26	Writing toal no. of possible outcomes $N(T) = \{ (1,1) (1,2) (6.5) (6,6) \} = 36$ For (i) part	1/2 mark

	Equation $N(E_1) = (5.1)(5.2)(5.2)(5.4)(5.1)(5.6)(1.5)(2.5)(2.5)$	1/2
	Favorable out comes $N(E_1) = \{ (5,1), (5,2), (5,3), (5,4), (5,), (5,6) (1,5) (2,5) (3,5) (4,5) (6,5) \} = 11$	1/2
	So probability of getting 5atleast once $P(E_1) = \frac{N(E_1)}{N(T)} = \frac{11}{36}$	1/2
	1.(1)	
	For (ii) part	$1\frac{1}{2}$
	Probability that 5 will not come up either time = $1 - P(E_1) = 1 - \frac{11}{36} = \frac{25}{36}$	2
Ans.27	Let BN=BL =xcm { length of tangents drawn from external point to a circle are	
	AM=AN(1)	4
	$CM = CL$ (2) equal in length}	l 1-
	Now AN = AB - BN = 10 - x	mark
	Similarly CL= BC- BL= 12-x	
	Now from fig. $AC=AM+CM$ $AC = AN+CL\{BY\ EQUATION\ 1\ AND\ 2\ \}$	
	12 = 10-x + 12-x	1
	2x = 10	mark
	$x = \frac{10}{2} = 5 \text{ cm}.$	
	<u> </u>	1
	$now\ BL=x=5cm.,\ CM=12-x=12-5=7cm., AN=10-x=10-5=5cm.$	mark
Ans.28	$\cos A - \sin A + 1$	
	LHS = $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1}$	
	$\cos A = \sin A + 1$	1
	$= \frac{\cos A}{\sin A} - \frac{\sin A}{\sin A} + \frac{1}{\sin A}$ $= \frac{\cos A}{\cos A} - \frac{\sin A}{\sin A} + \frac{1}{\sin A}$	n mark
	sín A + sin A - sin A	mark
	_ cot A - 1 + cosec A	
	cot A +1 - cosec A	
	$cosec A + cot A - (cosec^2 A - cot^2 A)$	
	(cot A - cosec A + 1)	1
	$[\because \csc^2 A = 1 + \cot^2 A \Longrightarrow \csc^2 A - \cot^2 A = 1]$	mark
	cosec A + cot A - (cosec A + cot A)	
	(cosec A – cot A)	
	(cot A - cosec A + 1)	1
	$ (\operatorname{cosec} A + \operatorname{cot} A)(1 - \operatorname{cosec} A + \operatorname{cot} A) $	mark
	(cot A – cosec A + 1)	
	= cosec A + cot A = RHS.	
Ans.29	For plotting correct graph	
	7 - (0, 6) 5 - 4 - (2, 3) 3 - 2 - (4, 0) x' - 1 0 1 2 3 4 5 6 7 ×	2 marks

	Writing correct vertices (2,3) (-1,4) &(4,0)	1
	OR	mark
	Let number of rows = x And number of students in each row = y Therefore total number of students in class = xy Condition 1: If 3 students are extra in a row, there would be 1 row less (x - 1)(y + 3) = xy xy + 3x - y - 3 = xy 3x - y = 3(1) Condition 2: If 3 students are less in a row, there would be 2 rows more (x + 2)(y - 3) = xy xy - 3x + 2y - 6 = xy	1 mark
	- $3x + 2y = 6$ (2) Adding equations (1) and (2), we obtain 3x - y + (-3x + 2y) = 3 + 6 y = 9 Substituting $y = 9$ in equation (1), we obtain 3x - 9 = 3 3x = 12	1 mark
	x = 4 Hence, number of students in the class, $xy = 4 \times 9 = 36$	1 mark
Ans.30	By splitting the middle term, we get $f(x) = \sqrt{3} x^2 - 6x - 2x + 4\sqrt{3}$ $= \sqrt{3} x(x - 2\sqrt{3}) - 2(x - 2\sqrt{3})$ $= (\sqrt{3} x - 2) (x - 2\sqrt{3})$ On putting $f(x) = 0$, we get $(\sqrt{3} x - 2) (x - 2\sqrt{3}) = 0$ $\Rightarrow \sqrt{3} x - 2 = 0 \text{ or } x - 2\sqrt{3} = 0$ $x = 2/\sqrt{3} \text{ or } x = 2\sqrt{3}$ verification	1 mark 1 mark
	sum of zeros = -b/a product of zeros = $\frac{c}{a}$ $2/\sqrt{3} + 2\sqrt{3} = -(-8)/\sqrt{3}$ $\frac{2}{\sqrt{3}} \times 2\sqrt{3} = \frac{4\sqrt{3}}{\sqrt{3}}$ $8/\sqrt{3} = 8/\sqrt{3}$ $4 = 4$ OR Given sum of Zeros=6 and product of zeros = 9 Polynomial $P(x) = k(x^2 - (\text{sum of zeroes})x + \text{product of zeroes})$ $P(x) = K(x^2 - 6x + 9)$ For finding zeroes	1 mark 1 mark
Ans.31	Applying splitting middle terms $P(x) = K(x^{2} - 3x - 3x + 9)$ $P(x) = K(x-3)(x-3)$ For zeroes compare $P(x) = 0$ Gives $x = 3$ and $x = 3$ Full marks for correct proof	mark 1 mark

Ans.32	Let us first draw the diagram				
	Let P be the required location of the pole.				
		1			
		l mark			
		IIIaik			
	13				
	Let the distance of the pole from the gate B be x m, i.e., $BP = x$ m. Now the difference	1			
	of the distances of the pole from the two gates = $AP - BP$ (or, $BP - AP$) = 7 m.	mark			
	Therefore, $AP = (x + 7) \text{ m}$.				
	Now, $AB = 13m$, and since AB is a diameter, $\angle APB = 90^{\circ}$ Therefore, $AP^2 + PB^2 = AB^2$ (By Pythagoras theorem)				
	i.e., $(x + 7)^2 + x^2 = 13^2$ i.e.,				
	$x^2 + 14x + 49 + x^2 = 169$ i.e.,				
	$2x^2 + 14x - 120 = 0$	1			
	$x^2 + 7x - 60 = 0$	mark			
	So, it would be possible to place the pole if this equation has real roots. To see if this is so or not, let us consider its discriminant. The discriminant is				
	be be be a consider its discriminant. The discriminant is $D=b^2-4ac=72-4\times 1\times (-60)=289>0$.				
	So, the given quadratic equation has two real roots, and it is possible to erect the pole on				
	the boundary of the park. Solving the quadratic equation				
	$x^2 + 7x - 60 = 0$, by the quadratic formula, we get	1			
	x = 5 or -12.				
	Since x is the distance between the pole and the gate B, it must be positive. Therefore, $x = -12$ will have to be ignored.	mark			
	So, $x = 5$. Thus, the pole has to be erected on the boundary of the park at a distance of	1			
	5m from the gate B and 12m from the gate A.	mark			
Ans.33	For compact statement	1			
Alls.33	For correct statement For correct digram writing given ,to prove,	mark			
	For correct proof	1			
	In the given figure, DE AC and DF AE.	mark			
	Prove that BF/FE=BE/EC·	1			
	In ΔBAC, DE AC [Given]	mark			
	BE BD (1)				
	$\therefore \frac{BE}{EC} = \frac{BD}{AD} \dots (i) $ [By Basic Proportionality Theorem]				
	Similarly, in ΔBAE, DF AE [Given]	1			
	DE PD	n mark			
	$\frac{BF}{FE} = \frac{BD}{DA}$ (ii) [By Basic Proportionality Theorem]	III			
	From equations (i) and (ii), we get:				
	RF RF				
	$\frac{BE}{EC} = \frac{BF}{FE}$ Hence, proved .	1			
	EG PE	mark			
]			

Ans.34	DailyWages(Numberof	Class	A= 170	f _i x U _i	1
	inRs.)	Workers (f _i)	mark	$U_i = \frac{X_i - A}{h}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mark
	,		X_{i}			
	100-120	10	110	h=20	-30	
	120-140	15	130	-2	-30	
	140-160	20 f ₀	150	-1	-20	
	160-180	22 f ₁	170	0	0	
	180-200	18 f ₂	190	1	18	
	200-220	12	210	2	24	
	220-240	13	230	3	39	
		$\sum f_i = 100$			$\sum f_i x U_i = -80 + 81 = 1$	
	$\bar{x} = A + \frac{\sum_{fix}U}{\sum_{fi}}x$ $\bar{x} = 170 + \frac{1}{100}x$ $\bar{x} = 170 + 0.2$ Mode of the d	20=172.02		x 20		$1\frac{1}{2}$ mark s 1 mark
		Z = 160 +	6.67= 166.0 OR	67		
	Class		uency (f)		ative frequency (cf)	11
	0-10	f_1		f_1		$1\frac{1}{2}$
	10-20	5		5+ f ₁		mark
	20-30	9		$14+f_1$		S
	30-40	12		$26+f_1$	C	
	40-50	f_2		26+ f ₁ +		
	50-60	3		$29+f_1+$		$1\frac{1}{2}$
	60-70 Total	2	40	$31+f_1+$	- T ₂	mark
	Given median Median = 32.5	5		ass is30-40, l	=30N=40 ,f =12, C= 14+ f ₁ , h=10	
	$1 + \frac{\frac{N}{2} - C}{f} \times h$ $30 + \frac{\frac{40}{2} - (14 + f1)}{12}$ $\frac{20 - 14 - f1}{12} \times 10$ $\frac{6 - f1}{12} = \frac{2.5}{10}$ $6 - f_1 = \frac{12}{4}$	$= 32.5$ $\frac{1}{2} \times 10 = 32.5$				1 mark

Ans.35 Let BPC be the hemisphere and ABC be the cone standing on the base of the hemisphere The radius BO of the hemisphere (as well as of the cone) = $1/2 \times 4$ cm = 2 cm. So, volume of the toy $= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$ $V = \frac{2}{3}x3.14 \times 2x2x2 + \frac{1}{3}x3.14x2x2x2 = 25.12 \text{ cm}^3$ Now, let the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = $(2 + 2)$ cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³ Hence, the required difference of the two volumes = 25.12 cm^3 . Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS= 400 units. So, area of square PQRS= 400 units. So, area of square PQRS= (400) ² = 16000 sq.units . OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2 + (0-400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $\Rightarrow -200-200k = 600 + 200k$ $\Rightarrow -400k = 800$ $\Rightarrow k=-2$ Ans.37 (i)Here a= 5, d=3 $a_n = a + (n + 1) d$ $59 = 5 + (n - 1) 3$ $n = 19$		$6-3 = f_1$	$1\frac{1}{2}$
Ans.35 Second Secon		$f_1 = 3$	
Section F2 = 6 Section F2 = 6 Section F2 = 6 Section F3 = 6 Section F4 = 6 Section			
Ans.35 Let BPC be the hemisphere and ABC be the cone standing on the base of the hemisphere The radius BO of the hemisphere (as well as of the cone) = $1/2 \times 4$ cm = 2 cm. So, volume of the toy $= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^3 h$ $V = \frac{2}{3}x3.14 \times 2x2x2 + \frac{1}{3}x3.14x2x2x2 = 25.12 \text{ cm}^3$ Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = $(2 + 2)$ cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³ Hence, the required difference of the two volumes = 25.12 cm ³ . Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS= 400 units. So, area of square PQRS= 400 units. So, area of square PQRS= $(400)^2 = 16000 \text{ sq.units}$. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200 - 200)^2 + (0 - 400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $\Rightarrow -200 - 2000 \times 600 + 200k$ $\Rightarrow -400k = 800$ $\Rightarrow k=2$ Ans.37 (i)Here a= 5, d=3 $a_0 = a + (n + 1) d$ $59 = 5 + (n - 1) 3$ $n = 19$		-	l mark
: Let BPC be the hemisphere and ABC be the cone standing on the base of the hemisphere The radius BO of the hemisphere (as well as of the cone) = $1/2 \times 4$ cm = 2 cm. So, volume of the toy $= \frac{2}{3}\pi$ r $^3 + \frac{1}{3}\pi$ r 3 h $V = \frac{2}{3}x3.14$ x2x2x2 $+ \frac{1}{3}x3.14x2x2x2 = 25.12$ cm 3 Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = (2 + 2) cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm 3 = 25.12 cm 3 Hence, the required difference of the two volumes = 25.12 cm 3 . Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS=400 units. So, area of square PQRS=400 units. OR (iii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2+(0-400)^2}=\sqrt{320000}=400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1\times600+k\times200}{1+k} = -200.200k=600+200k = -400k=800$ = \times 400k=800 = \times k=-2	1 25		1114111
The radius BO of the hemisphere (as well as of the cone) = $1/2 \times 4$ cm = 2 cm. So, volume of the toy = $\frac{2}{3}\pi$ r ³ + $\frac{1}{3}\pi$ r ² h $V = \frac{2}{3}x3.14 \text{ x}2x2x2 + \frac{1}{3}x3.14x2x2x2 = 25.12 \text{ cm}^3$ Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = (2 + 2) cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³ = 25.12 cm ³ Hence, the required difference of the two volumes = 25.12 cm ³ . Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS= 400 units. So, area of square PQRS= 400 units. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2+(0-400)^2}=\sqrt{320000}=400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ = $-200-200k=600+200k$ = $-200-200k=600+200$	Ans.35		1/2
$V = \frac{2}{3}x3.14 \ x2x2x2 + \frac{1}{3}x3.14x2x2x2 = 25.12 \ cm^3$ Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = (2 + 2) cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12) \ cm^3$ = $25.12 \ cm^3$ Hence, the required difference of the two volumes = $25.12 \ cm^3$ 4 cm So, area of square PQRS= $400 \ units$. So, area of square PQRS= $400 \ units$. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200 - 200)^2 + (0 - 400)^2} = \sqrt{320000} = 400\sqrt{2} \ units$ (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k} = 200 = \frac{1 \times 600 + k \times 200}{1 + k} = 200 = \frac{1 \times 600 + k \times 200}{1 + k} = 200 = \frac{1 \times 600 + k \times 200}{1 + k} = 200 = \frac{1 \times 600 + k \times 200}{1 + k} = 200 = 20000 = 2000 = $		The radius BO of the hemisphere (as well as of the cone) = $1/2 \times 4$ cm = 2 cm.	
Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = (2 + 2) cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³ = 25.12 cm ³			1/2
base of the right circular cylinder = HP = BO = 2 cm, and its height is EH = AO + OP = $(2 + 2)$ cm = 4 cm So, the volume required = volume of the right circular cylinder – volume of the toy = $(3.14 \times 2^2 \times 4 - 25.12)$ cm ³ = 25.12 cm ³			$1\frac{1}{2}$
the volume required = volume of the right circular cylinder – volume of the toy $ = (3.14 \times 2^2 \times 4 - 25.12) \text{ cm}^3 $ $= 25.12 \text{ cm}^3 $ Hence, the required difference of the two volumes = 25.12 cm ³ .			1/2
$= (3.14 \times 2^2 \times 4 - 25.12) \text{ cm}^3$ $= 25.12 \text{ cm}^3$ Hence, the required difference of the two volumes = 25.12 cm ³ . Ans.36 (i) R(200,400) and S(-200,400)			
Hence, the required difference of the two volumes = 25.12 cm^3 . Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS= 400 units . So, area of square PQRS= $(400)^2 = 16000 \text{ sq.units}$. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2 + (0-400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $= > -200 - 200 \times 600 + 200 \times 600 + 200 \times 600 + 200 \times 600 + 200 \times 600 \times 600 + 200 \times 600 \times 600$		$= (3.14 \times 2^2 \times 4 - 25.12) \text{ cm}^3$	
Ans.36 (i) R(200,400) and S(-200,400) (ii) (a) Side of square PQRS= 400 units. So, area of square PQRS= $(400)^2 = 16000 \text{ sq.units.}$ OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2 + (0-400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $= > -200 - 200k = 600 + 200k$ $= > -400k = 800$ $= > k = -2$ Ans.37 (i)Here $a = 5$, $d = 3$ $a_n = a + (n-1) d$ $59 = 5 + (n-1) 3$ $n = 19$			2
(ii) (a) Side of square PQRS= 400 units. So, area of square PQRS= $(400)^2 = 16000 \text{ sq.units.}$ OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2 + (0-400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $= > -200 - 200k = 600 + 200k$ $= > -400k = 800$ $= > k = -2$ Ans.37 (i)Here $a = 5$, $d = 3$ $a_n = a + (n-1) d$ $59 = 5 + (n-1) 3$ $n = 19$		Hence, the required difference of the two volumes $= 25.12 \text{ cm}^3$.	
So, area of square PQRS= $(400)^2 = 16000$ sq.units. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2 + (0-400)^2} = \sqrt{320000} = 400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1 \times 600 + k \times 200}{1 + k}$ $= > -200 - 200k = 600 + 200k$ $= > -400k = 800$ $= > k = -2$ Ans.37 (i)Here $a = 5$, $d = 3$ $a_n = a + (n-1) d$ $59 = 5 + (n-1) 3$ $n = 19$	Ans.36		1
So, area of square PQRS=(400) =16000 sq.timts. OR (ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2+(0-400)^2}=\sqrt{320000}=400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200 = \frac{1\times 600+k\times 200}{1+k}$ $=> -200-200k=600+200k$ $=> -400k=800$ $=> k=-2$ Ans.37 (i)Here a= 5, d=3 $a_n=a+(n-1)d$ $59=5+(n-1)3$ $n=19$			2
(ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2+(0-400)^2}=\sqrt{320000}=400\sqrt{2}$ units (iii) Using the section formula for the x-coordinate $-200=\frac{1\times 600+k\times 200}{1+k}$ => -200-200k=600+200k => -400k=800 => k=-2			
$=> -200-200k=600+200k$ $=> -400k=800$ $=> k=-2$ Ans.37 (i)Here a= 5, d=3 $a_n= a + (n-1) d$ $59 = 5 + (n-1) 3$ $n= 19$ 1		(ii) (b) Length of diagonal PR= $\sqrt{(-200-200)^2+(0-400)^2}=\sqrt{320000}=400\sqrt{2}$ units	2
Ans.37 (i)Here $a=5$, $d=3$ $a_n=a+(n-1)d$ $59=5+(n-1)3$ $n=19$		I I N	
Ans.37 (i)Here $a=5$, $d=3$ $a_n=a+(n-1)d$ 59=5+(n-1)3 n=19			1
$ \begin{array}{c} a_n = a + (n-1) d \\ 59 = 5 + (n-1) 3 \\ n = 19 \end{array} $	Ans.37		1
		$a_n = a + (n-1) d$ 59 = 5 + (n-1) 3	1
		(ii) $a_n = a + (n-1) d$	1

	(iii)(a)To earn Rs.5000 on a specific day, the no. of people on that day=5000/100=50	
	now using nth term formula	2
	50=5+(n-1)3 => n=16	
	(iii)(b) Total people joined in 16 days $S_{16} = \frac{16}{2} [2 \times 5 + (16-1)3]$	
	$S_{16}^2 = 8 (10 + 45)$	
	$S_{16} = 8 \times 55 = 440$	2
	So, total amount earned= 440×100=Rs.44000	
Ans	(i) In \triangle PAD, $\tan 30^0 = \frac{PD}{AD}$	
	$ \begin{array}{ccc} AD \\ 1 & 20 \end{array} $	1
	$\frac{1}{\sqrt{3}} = \frac{20}{AD}$	
	$AD = 20\sqrt{3} = 34.6 \text{ m}$	
	(ii) In \triangle PBD, $\tan 45^0 = \frac{PD}{BD}$ $1 = \frac{20}{BD}$	
	$\frac{1}{20}$	
	BD = 20 m	1
	Width of the river= AB= AD + BD=34.6+20=54.6m	1
	(iii)(a) Time taken by boat A to reach D= $\frac{34.6}{10}$ = 3.46 seconds	
	Time taken by boat A to reach $D = \frac{20}{5} = 4$ seconds	
	So, boat A will reach point D first.	2
	OR	
	(iii)(b) Distance covered by boat A in 3 seconds= 10×3=30m	
	Distance covered by boat A in 3 seconds= $5 \times 3 = 15$ m	
	So, distance between the two boats after 3 seconds= AB-(30+15)	
	= 54.6-45	2
	=9.6m	