## केंद्रीय विद्यालय संगठन , अहमदाबाद संभाग

## KENDRIYA VIDYALAYA SANGATHAN, AHMEDABAD REGION

## प्री-बोर्ड परीक्षा 2025-26 PRE BOARD-I 2025-26

**SUBJECT: MATHEMATICS (041)** 

CLASS: XI

M.M.: 80 TIME: 3 HOURS

ANSWER KEY SET-1 (A)

|           | . ,                                               |   |  |
|-----------|---------------------------------------------------|---|--|
| SECTION A |                                                   |   |  |
| 1         | $(c)\frac{\pi}{3}$                                | 1 |  |
| 2         | (b) 64                                            | 1 |  |
| 3         | (a)8                                              | 1 |  |
| 4         | (d)a scalar matrix                                | 1 |  |
| 5         | (b)=1                                             | 1 |  |
| 6         | (d) R - {4}                                       | 1 |  |
| 7         | $(c)-2\sqrt{\pi}$                                 | 1 |  |
| 8         | (b) 2                                             | 1 |  |
| 9         | <b>(b)</b> $tan(xe^x) + C$                        | 1 |  |
| 10        | (d)(2,∞)                                          | 1 |  |
| 11        | (b) 0                                             | 1 |  |
| 12        | (c) (3,3)                                         | 1 |  |
| 13        | (d) q=3p                                          | 1 |  |
| 14        | (c)12                                             | 1 |  |
| 15        | $(c)\frac{\pi}{3}$                                | 1 |  |
| 16        | (b) $\vec{a} \perp \vec{b}$                       | 1 |  |
| 17        | (d)(4,0)                                          | 1 |  |
| 18        | $(c)^{\frac{2}{3}}$                               | 1 |  |
| 19        | (d) Assertion(A) is false but reason(R) is true   | 1 |  |
| 20        | (c) Assertion (A) is true but reason(R) is false. | 1 |  |
| L         | I .                                               |   |  |

|    | SECTION B                                                                                    |     |
|----|----------------------------------------------------------------------------------------------|-----|
| 21 | Substitute                                                                                   |     |
|    | $x = tan(\theta)$                                                                            | 1   |
|    | $\sin^{-1}\left(\frac{\tan\theta}{\sec\theta}\right) =$ $\sin^{-1}(\sin\theta) = 0$          | 1   |
|    | $ \begin{aligned} sin^{-1}(sin\theta) &= \theta \\ &= tan^{-1}x \end{aligned} $              | 1   |
|    | OR 2 14                                                                                      |     |
|    | $ \begin{vmatrix} -1 \le -x^2 \le 1 \\ (i)x^2 \ge -1 \end{vmatrix} $                         |     |
|    | This is true for all real numbers, as the square of any real number                          | 0.5 |
|    | is non-negative.<br>(ii) $-1 \le -x^2$                                                       | 0.5 |
|    | $1 \ge x^2$ ,                                                                                |     |
|    | $-1 \le x \le 1$                                                                             |     |
|    | The domain of the function is [-1,1]                                                         | 1   |
| 22 | Taking log both side                                                                         |     |
|    | $log x = \frac{y}{x}$                                                                        |     |
|    | Differentiate both side w.r.t. x                                                             |     |
|    | $\frac{1}{x} = \frac{y - x \frac{dy}{dx}}{y^2}$                                              | 1   |
|    | $\frac{dy}{dx} = \frac{xy - y^2}{x^2} = \frac{y(x - y)}{x^2} =$                              |     |
|    | Substitute                                                                                   |     |
|    | $y = \frac{x}{\log x}$                                                                       |     |
|    | $\frac{dy}{dx} = \frac{x - y}{x \log x}$                                                     | 1   |
|    |                                                                                              | 1   |
| 23 | $u = 2^{\cos^2 x}$ , $v = \cos^2 x$                                                          | -1  |
|    | $\frac{du}{dx} = 2^{\cos^2 x} (\log 2)(-2\cos x \sin x),  \frac{dv}{dx} = (-2\cos x \sin x)$ | 1   |
|    | $du = \frac{du}{dt}$                                                                         |     |
|    | $\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = 2^{\cos^2 x} (\log 2)$                | 1   |
| 24 | $\operatorname{Put}_{\pi} \sqrt{x} = t, dx = 2tdt$                                           | 1   |
|    | $\int_0^{\frac{\pi}{2}} \sin t  dt$                                                          | 1   |
|    | $=2[-cost]_0^{\frac{\pi}{2}}=2(0-1)=-2$                                                      | 1   |
|    | OR                                                                                           |     |
|    | Put $1 + 2x = t^2$ , $x = \frac{t^2 - 1}{2}$                                                 |     |
|    | 2dx = 2tdt, dx = tdt                                                                         |     |
|    | $= \int \frac{t^2 - 1}{2} t  t  dt = \frac{1}{2} \int t^4 - t^2  dt$                         | 1   |
|    | $= \frac{1}{2} \left( \frac{t^5}{5} - \frac{t^3}{3} \right) + c$                             |     |
|    |                                                                                              |     |
|    | $\frac{1}{2} \left( \frac{(1+2x)^{5/2}}{5} - \frac{(1+2x)^{3/2}}{3} \right) + c$             | 1   |
|    | 4\ 0                                                                                         |     |

Page **2** of **8** 

|    | T                                                                                                                                                                                                                                                                                                                                                                                 | 1     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    |                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 25 | $l = m = n = \cos\alpha,$ $l^2 + m^2 + n^2 = 1$ $\cos\alpha = \pm \frac{1}{\sqrt{3}}$                                                                                                                                                                                                                                                                                             | 1     |
|    | Vector $\vec{a} = 5\sqrt{3} \left( \pm \frac{1}{\sqrt{3}} \hat{\imath} \pm \frac{1}{\sqrt{3}} \hat{\jmath} \pm \frac{1}{\sqrt{3}} \hat{k} \right)$                                                                                                                                                                                                                                |       |
|    | $\begin{vmatrix} \vec{a} = 5(\hat{i} + \hat{j} + \hat{k}) \end{vmatrix}$                                                                                                                                                                                                                                                                                                          | 1     |
|    | SECTION C                                                                                                                                                                                                                                                                                                                                                                         |       |
| 26 | $V = \frac{4}{3}\pi r^3$                                                                                                                                                                                                                                                                                                                                                          |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | 1/2   |
|    | Differentiating both side with respect to t $dr=1$ ,                                                                                                                                                                                                                                                                                                                              | 1     |
|    | $\frac{dr}{dt} = \frac{1}{4\pi}  cm/s$ Now S be the surface area of the sphere at any time to                                                                                                                                                                                                                                                                                     |       |
|    | Now S be the surface area of the sphere at any time t $s=4\pi r^2$                                                                                                                                                                                                                                                                                                                | 1/2   |
|    | $\frac{ds}{dt} = 8\pi r \frac{dr}{dt}$                                                                                                                                                                                                                                                                                                                                            | 1/2   |
|    | dt dt                                                                                                                                                                                                                                                                                                                                                                             |       |
|    | $\frac{ds}{dt} = 10cm^2/s$                                                                                                                                                                                                                                                                                                                                                        | 1/2   |
| 27 | Corner point Value of z  O(0,0)                                                                                                                                                                                                                                                                                                                                                   | 1 1/2 |
|    | Since feasible region is unbounded. Plot $x + 2y > 6$ which has common region with feasible region, thus Z has no maximum value.                                                                                                                                                                                                                                                  | 1/2   |
| 28 | $x = a\left(\cos\theta + \log\tan\frac{\theta}{2}\right)$                                                                                                                                                                                                                                                                                                                         |       |
|    | Differentiating w.r.t θ                                                                                                                                                                                                                                                                                                                                                           |       |
|    | $\frac{d\theta}{d\theta} = acot\theta cos\theta$                                                                                                                                                                                                                                                                                                                                  | 1     |
|    | and $y = sin\theta$ , $dy$                                                                                                                                                                                                                                                                                                                                                        | 0.5   |
|    | $\frac{1}{d\theta} = \cos\theta$                                                                                                                                                                                                                                                                                                                                                  | 0.5   |
|    | $\frac{dy}{dx} = \frac{\tan \theta}{a}$                                                                                                                                                                                                                                                                                                                                           | 0.5   |
|    | Since feasible region is unbounded. Plot $x + 2y > 6$ which has common region with feasible region, thus Z has no maximum value. $x = a\left(\cos\theta + \log\tan\frac{\theta}{2}\right)$ Differentiating w.r.t $\theta$ $\frac{dx}{d\theta} = a\cot\theta\cos\theta$ and $y = \sin\theta$ , $\frac{dy}{d\theta} = \cos\theta$ $\frac{dy}{d\theta} = \frac{\tan\theta}{d\theta}$ | 1/2   |

|    | $\frac{d^2y}{dx^2} = \frac{\sec^3\theta\tan\theta}{a^2}$                                                                                  |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | $\left \frac{dx^2}{dx^2} - \frac{a^2}{a^2}\right $                                                                                        | 0.5 |
|    | $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{4} = \frac{2\sqrt{2}}{a^2}$                                                                   | 0.5 |
|    | $\begin{bmatrix} ax^2 & 4 & a^2 \end{bmatrix}$                                                                                            |     |
|    | OR                                                                                                                                        |     |
|    | $y = (tan^{-1}x)^2$                                                                                                                       |     |
|    | Differentiate w.r.t x                                                                                                                     |     |
|    |                                                                                                                                           |     |
|    | $\frac{dy}{dx} = \frac{2tan^{-1}x}{1+x^2}$                                                                                                | 1   |
|    | $\begin{bmatrix} ux & 1+x \\ 1 & dy \end{bmatrix}$                                                                                        |     |
|    | $(1+x^2)\frac{dy}{dx} = 2tan^{-1}x$                                                                                                       | 0.5 |
|    | Again differentiate w.r.t x                                                                                                               |     |
|    | $(x^2+1)$ $y_2+2xy_1=\frac{2}{1+x^2}$                                                                                                     |     |
|    | $ (x^{2} + 1)^{2} y_{2} + 2x(x^{2} + 1)y_{1} = 2 $                                                                                        | 1   |
|    | $(x^{2} + 1)^{2}y_{2} + 2x(x^{2} + 1)y_{1} = 2$                                                                                           | 0.5 |
| 29 |                                                                                                                                           |     |
| 29 | 2                                                                                                                                         |     |
|    | 1                                                                                                                                         |     |
|    |                                                                                                                                           |     |
|    | > 4                                                                                                                                       |     |
|    | -1                                                                                                                                        |     |
|    |                                                                                                                                           |     |
|    | -2                                                                                                                                        |     |
|    | -5 -4 -3 -2 -1 0 1 2 5 4                                                                                                                  |     |
|    | $A = A C^2$ , $A C^2 \frac{1}{A^2} \frac{1}{A^2}$                                                                                         | 1   |
|    | Area= $4\int_0^2 y dx = 4\int_0^2 \frac{1}{2} \sqrt{4^2 - x^2} dx$                                                                        | 1   |
|    | $= 2\left[\frac{x}{2}\sqrt{4^2 - x^2} + 8\sin^{-1}\left(\frac{x}{4}\right)\right]_0^2$                                                    | 1   |
|    | $2\left[\sqrt{12} + \frac{8\pi}{6}\right] = 4\sqrt{3} + \frac{8\pi}{3}$                                                                   | 1   |
|    | Type equation here.                                                                                                                       |     |
|    | OR                                                                                                                                        |     |
|    | Required area $A = \int_0^4 x(4-x)dx + \left  \int_4^5 x(4-x)dx \right $                                                                  | 1   |
|    |                                                                                                                                           | 1   |
|    | $A = \left[2x^2 - \frac{x^3}{3}\right]_0^4 + \left \left[2x^2 - \frac{x^3}{3}\right]_4^5\right $                                          | 1   |
|    |                                                                                                                                           |     |
| 30 | =32/3 +7/3= 13 sq. units.  That the dr ` of given lines are not proportional so, they are not                                             | 1/2 |
| 30 | parallel lines.                                                                                                                           | /2  |
|    | $(a_2 - a_1) = \hat{j} - 4\hat{k}$                                                                                                        | 1/2 |
|    | $ (a_2 - a_1) = j - 4k $ $ (b_1 \times b_2) = 2\hat{i} - 4\hat{j} - 3\hat{k} $                                                            | 1/2 |
|    | $(b_1 \times b_2) = 2l - 4J - 3k$<br>  Consider $(a_2 - a_1) \cdot (b_1 \times b_2) = 8 \neq 0$                                           | / 2 |
|    | Consider $(u_2 - u_1) \cdot (v_1 \times v_2) = 0 \neq 0$                                                                                  |     |
|    | Hence line will not intersect.                                                                                                            | 1/2 |
|    | So the lines are skew.                                                                                                                    | 1   |
|    |                                                                                                                                           | •   |
|    | Shortest distance= $\left \frac{(a_2-a_1).(b_1\times b_2)}{ b_1\times b_2 }\right  = \frac{8}{\sqrt{4+16+9}} = \frac{8}{\sqrt{29}}$ units |     |
|    | OR                                                                                                                                        |     |
|    | Let the wicket keeper divides the line segment in ratio k:1                                                                               | 1   |
|    |                                                                                                                                           | •   |
|    | $\vec{W} = \frac{k \cdot \vec{F} + 1 \cdot \vec{B}}{k + 1}$                                                                               | 1   |
|    | $6\hat{i} + 12\hat{j} = \left(\frac{12k+2}{k+1}\right)\hat{i} + \left(\frac{18k+8}{k+1}\right)\hat{j}$                                    | •   |
|    |                                                                                                                                           |     |

|    | On companies, the companents we set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | On comparing the components, we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |
|    | $6 = \left(\frac{12k+2}{k+1}\right), \qquad k = \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 31 | E= the first die showed an even number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|    | F= the sum of the numbers on the dice is $9 = \{(6,3), (3,6), (5,4), \dots \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|    | (4,5)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |
|    | $E \cap F = \{(6,3), (4,5)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |
|    | $n(S)=36, n(E)=18, n(F)=4 n(E\cap F)=2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
|    | $P\left(\frac{E}{F}\right) = \frac{P(E \cap F)}{P(F)} = \frac{2/36}{4/36} = \frac{1}{2}$ Type equation here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|    | SECTION D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 32 | Solution The given differential equation can be written as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2} \dots (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | Now (1) is a linear differential equation of the form $\frac{dx}{dy} + P_1 x = Q_1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|    | -1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|    | where, $P_1 = \frac{1}{1+v^2}$ and $Q_1 = \frac{\tan^{-1}y}{1+v^2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|    | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |
|    | Therefore, $I.F = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •   |
|    | Thus, the solution of the given differential equation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|    | Control of the Contro |     |
|    | $x e^{\tan^{-1} y} = \int \left( \frac{\tan^{-1} y}{1 + y^2} \right) e^{\tan^{-1} y} dy + C$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | Let $I = \int \left(\frac{\tan^{-1} y}{1 + v^2}\right) e^{\tan^{-1} y} dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
|    | $(1+y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •   |
|    | Substituting $\tan^{-1} y = t$ so that $\left(\frac{1}{1+v^2}\right) dy = dt$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|    | Substituting tan' $y = t$ so that $\left(\frac{1+y^2}{1+y^2}\right)^{dy} = ut$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|    | $I = \int t e^t dt = t e^t - \int 1 \cdot e^t dt = t e^t - e^t = e^t (t - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4   |
|    | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
|    | or $I = e^{\tan^{-1}y} (\tan^{-1}y - 1)$ Substituting the value of Lie accepting (2) was not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|    | Substituting the value of I in equation (2), we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|    | $x \cdot e^{\tan^{-1} y} = e^{\tan^{-1} y} (\tan^{-1} y - 1) + C$ or $x = (\tan^{-1} y - 1) + C e^{-\tan^{-1} y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    | or $x = (\tan^{-1} y - 1) + C e^{-\tan^{-1} y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | which is the general solution of the given differential equation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
|    | S. A. Marian Squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 33 | (1 ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|    | $(kA)\left(\frac{1}{k}A^{-1}\right) = k\frac{1}{k} \ (AA^{-1}) = I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|    | $(kA)^{-1} = \frac{1}{k}A^{-1}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |
|    | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 |
|    | Hence calculate $(3A)^{-1} = \frac{1}{3}A^{-1}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    | $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,  |
|    | $\det(A) = 4 \neq 0, A^{-1} \text{exist}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2 |
|    | $adjA = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2   |
|    | $\begin{bmatrix} uu_{JH} - & 1 & 3 & 1 \\ & & & 1 & 1 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _   |
| L  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |

|    | $\begin{bmatrix} 1 & 3 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$                                                                   | 1/2   |
|----|-------------------------------------------------------------------------------------------------------------------------------|-------|
|    | $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$                                    |       |
|    | $(3A)^{-1} = \frac{1}{3}A^{-1} = \frac{1}{12} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$            | 1/2   |
| 34 | [-1 1 3]                                                                                                                      |       |
| 34 | $\int \frac{\cos x}{(4 + \sin^2 x)(5 - 4\cos^2 x)} dx$                                                                        |       |
|    | $= \int \frac{\cos x}{(4+\sin^2 x)(1+4\sin^2 x)} dx$                                                                          | 1     |
|    | Let, $\sin x = t \Rightarrow \cos x  dx = dt$                                                                                 |       |
|    | $l = \frac{dt}{(4+t^2)(1+4t^2)}$                                                                                              |       |
|    | $= -\frac{1}{15} \int \frac{dt}{4+t^2} + \frac{4}{15} \int \frac{dt}{1+4t^2}$                                                 | 1     |
|    | (: using partial fraction)<br>For the second term, let $u = 2t$ , so $du = 2dt$ .                                             |       |
|    | $I = -\frac{1}{15} \cdot \frac{1}{2} \tan^{-1} \left( \frac{t}{2} \right) + \frac{4}{15} \int \frac{1}{1 + u^2} \frac{du}{2}$ | 1     |
|    | $I = -\frac{1}{30} \tan^{-1} \left( \frac{t}{2} \right) + \frac{2}{15} \tan^{-1} (u) + C$                                     | 1     |
|    | $I = -\frac{1}{30} \tan^{-1} \left( \frac{t}{2} \right) + \frac{2}{15} \tan^{-1} (2t) + C$                                    |       |
|    | Substitute back $t = \sin x$ .                                                                                                | 1     |
|    | $I = -\frac{1}{30} \tan^{-1} \left( \frac{\sin x}{2} \right) + \frac{2}{15} \tan^{-1} (2\sin x) + C$                          |       |
|    | OR                                                                                                                            |       |
|    | $I = \int_0^\pi \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$                                                                       |       |
|    | $=2\int_{2}^{n} dx$                                                                                                           |       |
|    | $= 2 \int_0^{\frac{n}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$                                                             | 1.5   |
|    | $= 2 \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} dx$                                                           | 1.5   |
|    | tan x = t  sec2 x dx = dt                                                                                                     |       |
|    | $x=0 \Rightarrow t=0$                                                                                                         |       |
|    | $x = \frac{\pi}{2} \Rightarrow t = \infty$                                                                                    |       |
|    | $I = 2 \int_0^\infty \frac{dt}{a^2 + b^2 t^2}$                                                                                | 1     |
|    | $= \frac{2}{b^2} \cdot \frac{b}{a} \left[ \tan^{-1} \left( \frac{bt}{a} \right) \right]_0^{\infty}$                           | 1     |
|    |                                                                                                                               |       |
|    | $=\frac{2}{ab}\left(\frac{\pi}{2}-0\right)=\frac{\pi}{ab}$                                                                    | 1+0.5 |
|    |                                                                                                                               |       |

| 35 |                                                                                                                                                                                                                                                                                    |   |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
|    | $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$                                                                                                                                                                                                                                      |   |  |  |
|    | Any arbitrary point on line is M( $\lambda$ , 2 $\lambda$ +1, 3 $\lambda$ +2)<br>Dr's of AM are $< \lambda$ -1, 2 $\lambda$ -5, 3 $\lambda$ -1>                                                                                                                                    |   |  |  |
|    | AM perpendicular to line 1 $\lambda = 1$                                                                                                                                                                                                                                           |   |  |  |
|    | $\therefore M(1, 3, 5)$ is the foot of perpendicular of the point A to the given                                                                                                                                                                                                   |   |  |  |
|    | line.<br>Let the image of point A in the line be $A'(a, \beta, \gamma)$<br>Since M is the mid point of AA',                                                                                                                                                                        |   |  |  |
|    | $M\left(\frac{1+\alpha}{2}, \frac{6+\beta}{2}, \frac{3+\gamma}{2}\right) = M(1,3,5)$                                                                                                                                                                                               |   |  |  |
|    | A'(1, 0, 7)                                                                                                                                                                                                                                                                        | 1 |  |  |
|    | Also, Equation of AA' is $\frac{x-1}{0} = \frac{y-6}{-6} = \frac{z-3}{4}$                                                                                                                                                                                                          |   |  |  |
|    | OR                                                                                                                                                                                                                                                                                 |   |  |  |
|    | line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ ,<br>any random point on the line will be given by $P(\lambda-5, 4\lambda-3, -9\lambda+6)$<br>Since $PQ=7$                                                                                                                   | 1 |  |  |
|    | $\sqrt{(\lambda - 7)^2 + (4\lambda - 7)^2 + (-9\lambda + 7)^2} = 7$ $\lambda = 1$                                                                                                                                                                                                  | 1 |  |  |
|    | P(-4, 1, -3) The Equation of line PQ is                                                                                                                                                                                                                                            | 1 |  |  |
|    | $\left  \frac{x+4}{6} \right  = \frac{y-1}{3} = \frac{z+3}{2}$ or $\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2}$                                                                                                                                                                  | 1 |  |  |
|    | CASE STUDY                                                                                                                                                                                                                                                                         |   |  |  |
| 36 | <ul> <li>(i) No. of possible relation from S to J=2<sup>12</sup> = 4096         (n(S×J)=12)</li> <li>(ii) Condition:  S  ≤  J  (hear, 4 &gt; 3)</li> </ul>                                                                                                                         | 1 |  |  |
|    | It is impossible to assign all speakers to distinct judges. one-one functions can be there from set S to set J=0                                                                                                                                                                   | 1 |  |  |
|    | (iii) Given function from S to J as $f = \{(S_1, J_1), (S_2, J_2), (S_3, J_2), (S_4, J_3)\}$                                                                                                                                                                                       | 1 |  |  |
|    | $S_2$ and $S_3$ are both assigned to $J_2 \rightarrow$ not injective All judges $J = \{J_1 J_2 J_3\}$ are assigned $\rightarrow$ Surjective                                                                                                                                        | 1 |  |  |
|    | Since f is not bijective  OR                                                                                                                                                                                                                                                       |   |  |  |
|    | relation $R_1 = \{(S_1, S_2), (S_2, S_4)\}$<br>Add reflexive relation pairs $(S_1, S_1), (S_2, S_2), (S_3, S_3), (S_4, S_4)$<br>Keep $(S_1, S_2)$ but excluded $(S_2, S_1)$ ,<br>Final relation $R_1 = \{(S_1, S_1), (S_2, S_2), (S_3, S_3), (S_4, S_4), (S_1, S_2), (S_2, S_4)\}$ | 2 |  |  |

| 37 | (i)                                | Capacity=area×depth = $x^2h = 250$<br>$Cost(C) = 500x^2 + 4000h^2$                                    |     |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------|-----|
|    |                                    |                                                                                                       |     |
|    |                                    | $C = 500 \left(\frac{250}{h}\right) + 4000h^2$                                                        | 1   |
|    | (ii)                               | $\frac{dC}{dh} = -\frac{125000}{h^2} + 8000h$                                                         | _   |
|    |                                    | $\frac{dC}{dh} = 0$ , $h = \frac{5}{2}m$ or 2.5 m                                                     | 1   |
|    | (iii)                              | $\left(\frac{d^2C}{dh^2}\right)_{h=2.5} > 0$                                                          | 1   |
|    |                                    | Cost is minimum when h=2.5 m                                                                          |     |
|    |                                    | Minimum cost = $C = \frac{125000}{\frac{5}{2}} + 4000 \left(\frac{5}{2}\right)^2 = \text{Rs } 75,000$ | 1   |
|    |                                    | OR                                                                                                    |     |
|    |                                    | h=2.5 m when $\frac{dc}{dh}$ = 0                                                                      |     |
|    |                                    | For value of h less than 5/2 and closed o 5/2, $\frac{dc}{dh}$ < 0                                    |     |
|    |                                    | For value of h less more than 5/2 and closed o 5/2, $\frac{dc}{dh} > 0$                               | 1   |
|    |                                    | By first derivative test , C is minimum at $h=5/2$                                                    | 1   |
|    |                                    | Now $x^2 = \frac{250}{h}$ , $x = 10 m$ , $also, x = 4h$                                               |     |
| 38 | Let E <sub>1</sub> =c              | ustomer avails loan on fixed rate                                                                     |     |
|    | _                                  | omer avails loan on floating rate                                                                     |     |
|    | E <sub>3</sub> =custo              | omer avails loan on variable rate                                                                     |     |
|    | _                                  | on defaults on the loan                                                                               |     |
|    |                                    | $\frac{1}{10}$ , $P(E_2) = \frac{2}{10}$ , $P(E_3) = \frac{7}{10}$                                    |     |
|    | $P(A/E_1) =$                       | $=\frac{15}{100}$ , $P(A/E_2) = \frac{3}{100}$ , $P(A/E_3) = \frac{1}{100}$                           |     |
|    |                                    | $100' P(A) = P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3) = 9/500$                                | 1+1 |
|    | (ii) $P\left(\frac{E_3}{I}\right)$ | $= \frac{P(E_3)P(A/E_3)}{P(E_3)P(A/E_3) + P(E_3)P(A/E_3) + P(E_3)P(A/E_3)} = 7/18$                    | 1.1 |
|    | (A)                                | $P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3)$                                                    | 1+1 |