केन्द्रीय विद्यालय संगठन, बेंगलुरु संभाग

KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री बोर्ड परीक्षा-2025-26

MS-FIRST PRE BOARD EXAMINATION-2025-26

Subject: Applied Mathematics (241) Class: XII

1	2	3	4	5	6	7	8	9	10
A	C	В	A	В	В	D	A	A	A
11	12	13	14	15	16	17	18	19	20
В	С	В	В	D	A	В	В	D	A
	'			1	1		L	<u> </u>	
21(A)	The last tw	-				figits of 13	⁵⁰ are 49.		1.5
	The last to	wo digits o	$f7^{100} + 1$	3 ³⁰ are 50					0.5
21(B)	Squaring bot	h the sides							0.5
	Proving								1.5
22	k + 2k + 3k + 3k + 3k + 3k + 3k + 3k + 3		=1/8						0.5
	using k, mear	n =11/4							1.5
23	Formula P=	$P_0(1+r)^t$							0.5
	120,000=80,00	$00(1+r)^5$							0.5
	ln (1.5) =5 ln	(1+r), r = 0	0.0845, r is	84.5%					1
24(A)	P(X = k) =	$= \frac{e^{-\lambda} \lambda^k}{k!}$							0.5
	P(X=2) = 0.44	$18083/2 \approx 0.$	22404						1.5
24(B)	$P(T>t)=e^{-t/\theta}$								0.5
	where mean (9=500 and t	= 10000						0.5
	P(T>1000)=e	$-1000/500 = e^{-2}$	= 0.1353						1
25	Value after t	years: V = 1	1,000,000 -	80,000 t.					0.5
	After 6 years:	V = 1,000,	000 – 480,0)00 = ₹520,	000.				0.5
	When become ⇒ t = 500,000			,	,	000 t = 500	0,000 ⇒ 80,	000 t = 500,0	000 1
26	Let speed in s = 12/4 = 3 km			-			eed = u - v	= distance/t	time 1

	Solve: $u-v=3$, $u+v=4 \Rightarrow 2u=7 \Rightarrow u=3.5$ km/hr. Then $v=u+v-u=4-3.5=0.5$ km/hr.	1
	Stationary points where dy/dx = $3p x^2 + 2q x = x(3p x + 2q) = 0$. $x = 0$ or $x = -2q/(3p)$.	0.5
27(A)	Given one stationary point at $x = 2 \Rightarrow$ either $x=0$ (no) or $2 = -2q/(3p) \Rightarrow -2q = 6p \Rightarrow q = -3p$.	0.5
	Use point (2,4): $y(2) = p(8) + q(4) = 8p + 4q = 4$. Substitute $q = -3p \Rightarrow 8p + 4(-3p) = 8p - 12p = -4p = 4 \Rightarrow p = -1$. Then $q = -3(-1) = 3$.	1.5
	Other stationary point $x = 0$. Corresponding $y = y(0) = 0$. So other stationary point is $(0,0)$. And $p=-1$, $q=3$.	0.5
27(B)	$AR = \frac{R}{x} = \frac{24x + \frac{x^2}{2} - \frac{x^3}{6}}{x}$ $AR = 24 + \frac{x}{2} - \frac{x^2}{6}$	0.5
	$MR = \frac{dR}{dx} = \frac{d}{dx} \left(24x + \frac{x^2}{2} - \frac{x^3}{6} \right)$ $MR = 24 + \frac{2x}{2} - \frac{3x^2}{6}$	0.5
	2 0	0.5
	Find the point of maximum AR , $x=1.5$ Verify that AR is a maximum, using second order derivative	0.5
	Compare AR and MR at maximum AR (Value of AR at $x = 1.5$ is 24.375 and Value of MR at $x = 1.5$ is also 24.375) Therefore, at maximum AR, AR=MR	1
28(A)	Periodic coupon payment: $C=(FV\times c)/m=(₹60,000\times 0.08)/4=₹1,200$	0.5
	Periodic yield rate: $i = y/m = 0.10/4 = 0.025$	0.5
	Present value of the annuity: $P = C \times \left[\frac{1 - (1+i)^{-N}}{i} \right] + \frac{RV}{(1+i)^N}$	0.5
	P = ₹56,083.83	1.5
28(B)	Cost of new machine = Original Cost + (0.25 * Original Cost) = ₹1,00,000	0.5
	Amount needed = Cost of new machine - Scrap value = ₹90,000	0.5
	The formula to find the annual deposit (P) for a sinking fund is: $P=Ai/[(1+i)^n-1]$	0.5
	P = 6,212.34 (approx.)	1.5
29	Combined rate of pipes A and B = $1/24+1/36=5/72$ per minute	0.5
	Work done in the first 6 minutes = 5/12	0.5
	The remaining work = $1 - 5/12 = 7/12$ of the tank	0.5
	A+B+C = 13/144 per minute	0.5

	Time to fill remaining tank = $(7/12)/(13/144) = 84/13$ minutes			
	Total time = $6+(84/13) = 162/13 = 12.46$ minutes (approx.).	0.5		
		0.5		
30	This is a two-tailed test.			
	H ₀ : μ =1000 hours, H_1 : $\mu \neq$ 1000 hours	0.5		
	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$	0.5		
	$t = \frac{980 - 1000}{20/\sqrt{10}} = \frac{-20}{20/3.162} = \frac{-20}{6.3245} \approx -3.162$	1		
	We compare the absolute value of our calculated test statistic $ t $ to the critical value ($t_{critical}$) $ -3.162 = 3.162$.			
	Since 3.162 > 2.262, the calculated t-statistic falls in the rejection region. Since the absolute value of the calculated t-statistic is greater than the critical value, we reject the null hypothesis at the 5% significance level. So we can conclude that the population mean	0.5		
	lifetime is not 1000 hours, hence we reject the null hypothesis.	0.5		
31	Let $x = units of X$, $y = units of Y$.	0.5		
	Objective: Maximize Z=30x+40y	0.5		
	Constraints: Labour: 5x+8y≤400.			
	Capacity: x≤60, y≤40.	0.5		
	Nonnegativity: x,y≥0.	0.5		
	LPP: Maximize Z=30x+40y	0.5		
	subject to $5x+8y \le 400$, $x \le 60$, $y \le 40$, $x,y \ge 0$.	0.5		
32(A)	Write matrix form AX=B	1		
	$\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$	0.5		
	So $ A = 11 \neq 0$. Thus A is invertible	1		
	x= 28/11, y = 29/11, z = 25/11	2.5		
32(B)	For good A: $x_d(A) = x_s(A)$	0.5		
	$60-2p_A+p_B=-5+8p_A$	0.5		
	For good B: $x_d(B)=x_s(B)$	0.5 0.5		
	$70+p_A-3p_B=-6+10p_B$ Solve the system of equations, $p_A\approx 7.14$ and $p_B\approx 6.40$	3		

1

0.5

0.5

0.5

$$x\approx\frac{50\pm42.19}{6}$$

$$x_1 \approx \frac{50 + 42.19}{6} \approx 15.365$$

$$x_2 \approx \frac{50 - 42.19}{6} \approx 1.301$$

$$\frac{d(MC)}{dx} = -10 + 2x$$

$$\frac{d(MR)}{dx} = 40 - 4x$$

At $x \approx 15.365$:

$$\frac{d(MC)}{dx} \approx -10 + 2(15.365) = 20.73$$

$$\frac{d(MR)}{dx} \approx 40 - 4(15.365) = -21.46$$

Since 20.73 > -21.46, the profit-maximizing output is approximately 15.365.

$$TR = \int MRdx = \int (40x - 2x^2)dx = 20x^2 - \frac{2}{3}x^3$$

$$TC = \int MCdx = \int (60 - 10x + x^2)dx = 60x - 5x^2 + \frac{1}{3}x^3$$

$$TR \approx 20(15.365)^2 - \frac{2}{3}(15.365)^3 \approx 4716.29 - 2419.68 = 2296.61$$

$$TC \approx 60(15.365) - 5(15.365)^2 + \frac{1}{3}(15.365)^3 \approx 921.9 - 1179.91 + 1209.84 = 951.83$$

Finally, calculate the profit:

$$\pi = TR - TC \approx 2296.61 - 951.83 = 1344.78$$

34(A)							
	Year	(Year index)	y (Output)	x ²	xy		
	2018	1	12	1	12		
	2019	2	14	4	28		
	2020	3	16	9	48	1	
	2021	4	17	16	68	1	
	2022	5	20	25	100		
	Sum	15	79	55	256		
	$\sum y = na + b \sum x$ $\sum xy = a \sum x + b \sum x^2$						
	b= 1.9 and	a = 10.1					
The equation for the least squares trend line is $y=10.1+1.9x$						0.5	
The year 2026 corresponds to an x value of 9, since $2026-2017 = 9$. We can use the trend li equation to predict the output y: $y=10.1+1.9(9) = 10.1+17.1 = 27.2$. The predicted production 2026 is 27.2 tonnes.					0.5		
34(B)	February:	₹11 lakhs				1	
, ,	March: ₹13					1	
	April: ₹16.	5 lakhs				1	
	May: ₹17 la					$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
25	June: ₹18 l		2.00.000 D	17 4 4 . 12.0	0.000.2.00.000	1	
35	9,00,000	ment = 12,00,000* 0.25=	= 3,00,000, Principa	I Loan Amount = 12,0	0,000-3,00,000 =	1	
	EMI =	$P \times \frac{i \times (1+i)^n}{(1+i)^n - 1}$				0.5	
	EMI	$= 9,00,000 \times \frac{0.0075}{1.5}$	$\frac{5 \times (1.56)}{56 - 1}$				
	EMI =	$9,00,000 \times \frac{0.0117}{0.56}$	≈ 18, 803.57			2.5	

	Total amount paid = $EMI \times 60 = 18,803.57 \times 60 = 11,28,214.2$				
	Total interest = Total amount paid - Principal =	1			
	11, 28, 214.2 - 9, 00, 000 = 2, 28, 214.2				
36	 (i) Below mean 70 ⇒ by symmetry 50% of students. So 50%. (ii) P(X>80) ⇒ Z = (80-70)/10 = 1. So P(Z>1) = 0.1587 (from standard normal table). 	1			
	Number = $400 \times 0.1587 = 63.48 \approx 63$ students (or $63.5 \rightarrow 63$). (Round to nearest whole student: $63.$)	1			
	(iii) (A) (2 marks) Between 60 and 80: Z for $60 = (60-70)/10 = -1$; for $80 = +1$. P($-1 < Z < 1$) = 0.6826. Number = $400 \times 0.6826 = 273.04 \approx 273$ students.				
	OR (B) If top 5% with Z=1.645: cutoff score = μ + Z σ = 70 + 1.645×10 = 70 + 16.45 = 86.45	2			
	marks. So minimum qualifying \approx 86.45 (\approx 86.5).				
37	(i) Demand: $p_d=50-1/30x$.	1			
	(ii) Price p = p _s at x=600: p = -10 + 600/15 = -10 + 40 = ₹30/kg, (iii) (A) CS = ₹6,000 OR (B) 12000	1 2			
38	(i) Maximize $Z=x+y$	2			
	subject to the constraints				
	$3x+y\leq 180$,				
	$x+2y\leq 60$,				
	x≥0, y≥0				
	(ii) Maximum value for the distance is at point (60, 0), the maximum distance that can be travelled is 60 km.				
	180				
	$3x + y \le 180$				
	120				
	120				
	$60 x + 2y \le 60$	2			
	30				
	0 20 40 60 80				
	9-10-3				