Navodaya Vidyalaya Samiti, RO Shillong WHOLE SYLLABUS PRACTICE PAPER SET-I (2024-25)

Class-XII

Subject: Mathematics (041)

Time:3 Hours Maximum Marks:80

General Instructions

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section C** has 6 Short Answer (SA)-type questions of 3 marks each.
- **5. Section D** has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
- 7. Use of calculators is **not** allowed.

<u>SECTION – A</u>

(Multiple Choice Questions) Each question carries One Mark

If $\begin{bmatrix} 10 & 0 \\ 6 & 12 \end{bmatrix}$ = P + Q, where P is symmetric and Q is a skew symmetric matrix, then Q is equal to

$$(A)\begin{bmatrix}3 & 0\\0 & -3\end{bmatrix} (B)\begin{bmatrix}-3 & 3\\0 & 0\end{bmatrix} (C)\begin{bmatrix}0 & -3\\3 & 0\end{bmatrix} (D)\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$$

- Q,2If |A| = |kA|, where A is a square matrix of order 2, then sum of all possible values of k is
 - (A) 0
- (C) 2

A is a 2×2 matrix whose elements are given by $a_{ij} = \begin{cases} 1 \text{ , if } i \neq j \\ 0 \text{ . if } i = i \end{cases}$ 0.3 Then value of A^2 is

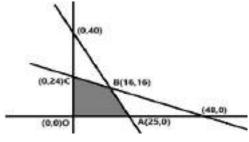
$$(A)\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad (B)\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad (C)\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad (D)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- **Q.4** A is a matrix of order 2×3 and B is a matrix of order 3×2 . If C=AB and D=BA, then order of CD is
- (A) 3×3 (B) 2×2 (C) 3×2
- (D) CD not defined

Q.5	If the matrix	$\begin{bmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} $ is t	he adjoint of A	and $ A = 4$, the	hen the value of k is
	(A) 11	(B) 8	(C) 12	(D) -11	
Q.6	The function is continuous	f(x) = [x], where	ere $[x]$ denote the	e greatest integ	ger function,
		(B)-2	(C) 1	(D) 1.5	
Q.7	If $f(x) = \cos x $	x , then the val	lue f' $\left(\frac{3\pi}{4}\right)$ is		
	$(A)^{\frac{1}{2}}$	$(B)^{\frac{-1}{2}} (C)^{\frac{1}{\sqrt{2}}}$	$(D)\frac{-1}{\sqrt{2}}$		
Q.8	If $\int_0^a \frac{1}{1+4x^2} =$	$=\frac{\pi}{8}$, then the va	alue of a is		
	$(A)^{\frac{1}{2}}$	$(B)^{\frac{-1}{2}} (C)^{\frac{1}{4}}$	$(D)\frac{1}{8}$		
Q.9	The area of the then mis equal		ded by the lines	y=mx, x=1,	x = 2 and x -axis is 6 sq. units,
	(A) 3	(B) 1	(C) 2	(D) 4	
Q.10	The integration	ng Factor of the	e differential eq	uation: $x \frac{dy}{dx}$	$y = 2x^2$ is
	(A) e^x (B) e	$-x$ (C) $\frac{1}{x}$	(D) :	x	
Q.11	The number a	arbitrary consta	nts involved in	the general sol	lution of the differential
		$^{5}+\left(\frac{\mathrm{d}^{3}\mathrm{y}}{\mathrm{d}3^{4}}\right) ^{6}-\left(\right.$	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 =$	25	
	(A) 6	(B) 5	(C) 2	(D) 4	
Q.12	If \vec{a} and \vec{b} are	two vectors, su	uch that $ \vec{a}\cdot\vec{b} $	$= \vec{a} \times \vec{b} $, then f	find the angle between $ec{a}$ and $ec{b}$
	$(A)\frac{\pi}{2}$	$(B)\frac{\pi}{4}$	$(C)\frac{\pi}{3} \qquad (D)\frac{\pi}{6}$		
Q.13 of	Position vect	or of the mid-p	oint of line seg	ment AB is 3î	$+2\hat{j}-3\hat{k}$. If the position vector
O1	the point A is	$s 2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}, t$	then the position	n vector of the	point B is
	$(A)\frac{5\hat{1}}{2} + \frac{5\hat{j}}{2} -$	$\frac{7\hat{k}}{2}(B) 4\hat{i} + \hat{j} - \hat{k}$	2k (C) 5i	$\hat{i} + 5\hat{j} - 7\hat{k}$	$(D)\frac{\hat{1}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{2}$

Q.14 If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = \sqrt{37}$, then the angle between \vec{a} and \vec{b} is

- $(A)^{\frac{\pi}{2}}$ $(B)^{\frac{\pi}{4}}$ $(C)^{\frac{\pi}{3}}$ $(D)^{\frac{\pi}{6}}$


Q.15 If a line makes an angle of $\frac{\pi}{4}$ with each of y and z axis, then the angle which it makes with *x*-axis is

- $(A)^{\frac{\pi}{2}}$ $(B)^{\frac{\pi}{4}}$ $(C)^{\frac{\pi}{3}}$ $(D)^{\frac{\pi}{6}}$

Q.16 The objective function Z = ax + by of an LPP has maximum value 42 at (4, 6) and minimum value 19 at(3, 2). Which of the following is true?

- (A) a = 9, b = 1 (B) a = 5, b = 2 (C) a = 3, b = 5 (D) a = 5, b = 3

The maximum value of Z = 4x+3y, if the feasible region for an LPP is as Q.17

- (A) 112
- (B)72
- (C) 100
- (D) 110

The probability that A speaks the truth is $\frac{4}{5}$ and that of B speaking the truth is $\frac{3}{4}$ Q.18 The probability that they contradict each other in stating the same fact is

- $(A)^{\frac{7}{20}}$ $(B)^{\frac{1}{5}}$ $(C)^{\frac{3}{20}}$ $(D)^{\frac{4}{5}}$

ASSERTION-REASON BASED QUSETIONS

Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.

- A) Both A and R are true and R is the correct explanation of A.
- B) Both A and R are true but R is not the correct explanation of A.
- C) A is true but R is false.
- D) A is false but R is true

Assertion (A): The value of $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ is 17

Reason (R): $\sec^2 \theta = 1 + \tan^2 \theta$ and $\csc^2 \theta = 1 + \cot^2 \theta$

Assertion(A): A line through the points (4,7,8) and (2,3.4) is parallel to a line through the

Reason (R): lines
$$\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$$
 and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are parallel if $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0$

SECTION B

(Each question carries 2 marks)

- Let $A = \{1,2,3,4\}$. Let R be the equivalence relation on A × A defined by $(a, b)R_{(c,d)}$ if a + d = b + c. Find the equivalence class [(1,3)].
- Q.22 If $f(x) = \begin{cases} \frac{\sqrt{1+kx}-\sqrt{1-kx}}{x}, -1 \le x < 0 \\ \frac{2x+1}{x}, 0 \le x < 1 \end{cases}$ is continuous at x=0, find the value of k.
- Find whether the function $f(x) = \cos\left(2x + \frac{\pi}{4}\right)$, is increasing or decreasing in the Q.23 interval $\left(\frac{3\pi}{8}, \frac{7\pi}{8}\right)$.
 - (OR)A particle moves along the curve $y = \frac{2}{3}x^3 + 1$. Find the points on the curve at which the y-coordinate is changing twice as fast as the x- coordinate.
- Q.24 Find the area of the parallelogram whose one of the sides and one diagonal are given by the vectors $3\hat{i} + \hat{j} + 4\hat{k}$ and $4\hat{i}+5\hat{j}$ respectively.
- Q.25 Find the direction ratios and direction cosines of the line whose equation is 6x - 12 = 3y + 9 = 2z - 2(OR)

Find the angle between any two diagonals of a cube.

SECTION C
(Each question carries 3 marks)

Q.26 Find the value of $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$

Evaluate:
$$\int \frac{\sin^{-1} x - \cos^{-1} x}{\sin^{-1} x + \cos^{-1} x} dx$$

Q.27 Find the value of $\int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx$

- Q.28 Find $\int \frac{1}{\sqrt{x}(\sqrt{x}+1)(\sqrt{x}+2)} dx$.
- Q.29 Find the general solution of $x \, dy y \, dx \sqrt{(x^2 + y^2)} \, dx = 0$. (OR)

 Find the general solution of the differential equation: $\frac{d}{dx}(xy^2) = 2y(1+x^2)$
- Q.30 Solve the L.P.P graphically: Maximize and Minimize Z=5x+10y subject to constraints $x+2y \le 120$, $x+y \ge 60$, $x-2y \ge 0$, $x,y \ge 0$.
- Q.31 A bag contains 4 white and 5 black balls. Another bag contains 9 white and 7 black balls. A ball is transferred from the first bag to the second and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.

SECTION D

(Each question carries 5 marks)

Q.32 Sketch the graph of y = |x + 3| and then evaluate the area under the curve y = |x + 3| above x-axis and between x = -6 to x = 0.

(OR)

Using integration, find the area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 and x = 1.

Q.33 If
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & -6 & 9 \\ 10 & 5 & -20 \end{bmatrix}$$
, find A^{-1} and then using A^{-1} solve the following system of equations: $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 2$

$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 5$$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = -4$$

Q.34 Show that the function f: $\mathbf{R} \to \mathbf{R}$ define by $f(x) = \frac{x}{x^2 + 1}$, for all $x \in \mathbf{R}$, is neither one-one nor onto.

OR

Each of the following defines relations on N:

- (i) x is greater than y, x, y \in N
- (ii) xy is square of an integerx, $y \in N$
- (iii) $x+4y=10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.

Q.35 Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn - 2nl + 5lm = 0.

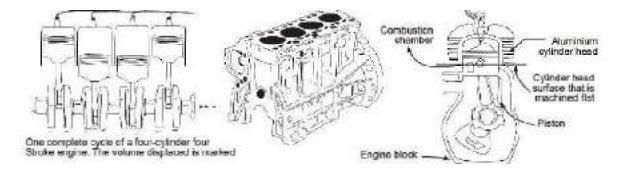
OR

Find the vector and cartesian equations of the line through the point (1,2,-4) and perpendicular to the lines

$$\vec{r} = (8\hat{\imath} - 9\hat{\jmath} + 10\hat{k}) + \lambda(3\hat{\imath} - 16\hat{\jmath} + 7\hat{k})$$

and $\vec{r} = (15\hat{\imath} - 29\hat{\jmath} + 5\hat{k}) + \mu(3\hat{\imath} + 8\hat{\jmath} - 5\hat{k})$

SECTION-E


[4x3=12]

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

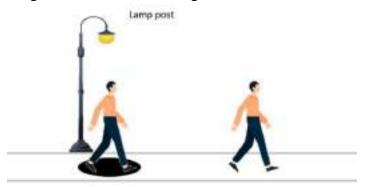
Case Study-1

Q.36 Read the following passage and answer the following questions.
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston

engine. The piston moves inside the cylinder bore,

The cylinder bore in the form of circular cylinder open at the top is to made from a metal sheet of area 75π sq. cm

- (i) If the radius of cylinder is r cm and height is h cm, then write the volume of cylinder in terms of radius r.
- (ii) Find $\frac{dV}{dr}$.
- (iii) (a) Find the radius of cylinder when its volume is maximum.


OR

(b) For maximum volume, h > r. State true or false, justify.

Case Study-2

Q.37 Read the following passage and answer the following questions.

A man, 2 m tall, walks at the rate of $1\frac{2}{3}$ metre per second towards a street light which is $5\frac{1}{3}$ metreabove the ground. If x and y are the distance of the man from the foot of the lamp post and length of his shadow on the ground at the time t, then

- (i) Find y in terms of x.
- (ii) At what rate is the length of the shadow changing when he is $3\frac{1}{3}$ m from the base of the light.
- (iii) At what rate is the tip of his shadow moving?

Case Study-3

Q.38 Read the following passage and answer the following questions.

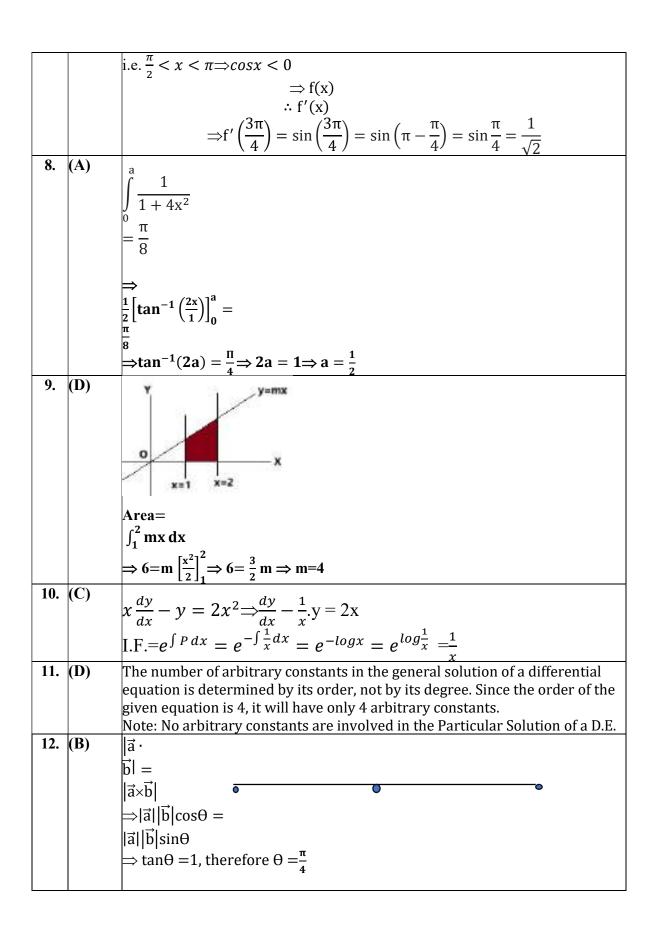
Three bags contain a number of red and white balls as follows:

Bag I:3 red balls

Bag II: 2 red balls and 1 white ball

Bag III:3 white ball

The probability that bag i will be chosen and a ball is selected from it is $\frac{i}{6}$, i = 1,2,3.


- (i) What is the probality that a red ball will be selected?
- (ii) What is the probality that a white ball is selected?
- (iii) If a white ball is selected, what is the probability that it came from Bag II?

NVS RO SHILLONG WHOLE SYLLABUS PRACTICE PAPER SET I (2024-2025) MARKING SCHEME CLASS XII MATHEMATICS(CODE-041)

SECTION:A

(Solution of MCQs of 1 Mark each)

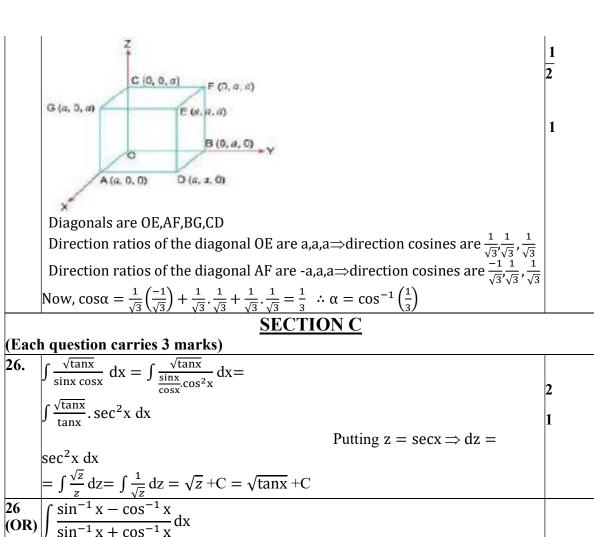
Q.NO	ANS	HINTS/SOLUTION
1.	(C)	Let $A = \begin{bmatrix} 10 & 0 \\ 6 & 12 \end{bmatrix} :: A' = \begin{bmatrix} 10 & 6 \\ 0 & 12 \end{bmatrix}$
		Now A + A' = $\begin{bmatrix} 10 & 0 \\ 6 & 12 \end{bmatrix}$ + $\begin{bmatrix} 10 & 6 \\ 0 & 12 \end{bmatrix}$ = $\begin{bmatrix} 20 & 6 \\ 6 & 24 \end{bmatrix}$ $\therefore \frac{1}{2}$ (A + A') = $\begin{bmatrix} 10 & 3 \\ 3 & 12 \end{bmatrix}$ = P
		$A - A' = \begin{bmatrix} 10 & 0 \\ 6 & 12 \end{bmatrix} - \begin{bmatrix} 10 & 6 \\ 0 & 12 \end{bmatrix} = \begin{bmatrix} 0 & -6 \\ 6 & 0 \end{bmatrix} \therefore \frac{1}{2} (A - A') = \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} = Q$
2.	(A)	A = kA and n=2 $ A = k^2 A $ (:: $ kA = k^n A $) $\Rightarrow k^2 = 1 \Rightarrow k = \pm 1 \Rightarrow \text{Sum of all values of } k = \pm 1 - 1 = 0$: Correct option is (A).
3.	(D)	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \therefore A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
4.	(D)	$O(C)=2\times 2$ and $O(D)=3\times 3$. The number of columns of C not equal to number of rows of B. Therefore, CD not defined Option: (D) CD not defined
5.	(A)	Order of A is 3×3
		Therefore, $ adj A = A ^2$
		$\Rightarrow \begin{vmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{vmatrix} = 4^2$
		$\Rightarrow 1(9-9) - k(4-6) + 3(4-6) = 16$
		$\Rightarrow 2k$ $= 22 \Rightarrow k$ $= 11$
6.	(D)	The greatest integer function $[x]$ is discontinuous at all integral values of x . Thus (D) is the correct answer.
7.	(C)	$x = \frac{3\pi}{4}$ is lie in the second quadrant.

13.	(B)	$A(2\hat{i}+3\hat{j}-4\hat{k})B(x\hat{i}+y\hat{j}+z\hat{k})$					
		$M(3\hat{i}+2\hat{j}-3\hat{k})$					
		M is the mid- point of AB					
		$\therefore \frac{2+x}{2} = 3, \frac{3+y}{2} = 2, \frac{-4+z}{2} = -3$					
		$\Rightarrow x = 4, y = 1, z = -2$					
1.4	(0)	Hence, $B = 4\hat{i} + \hat{j} - 2\hat{k}$					
14.	(C)						
		$+\vec{b}$					
		$+\vec{c}$					
		=0					
		$\Rightarrow \vec{a} + \vec{b} = -\vec{c} \Rightarrow \vec{a} + \vec{b} = \vec{c} \Rightarrow \vec{a} + \vec{b} ^2 = \vec{c} ^2 \Rightarrow \vec{a} ^2 + \vec{b} ^2 + 2\vec{a} \cdot \vec{b} = \vec{c} ^2$					
		$\Rightarrow \vec{a} ^2 + \vec{b} ^2$					
		$+2 \vec{a} \vec{b} \cos\theta$					
		$= \vec{c} ^2$					
		$\Rightarrow 3^2 + 4^2$					
		$+2.3.4.\cos\theta$					
		$=(\sqrt{37})^2$					
		$\Rightarrow \cos\theta = \frac{1}{2}$, therefore $\theta = \frac{\pi}{3}$					
15.	(A)	Let the line be make angle α with x -axis. Then $\cos^2 \alpha + \cos^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4} = 1$					
		which after simplification gives $\alpha = \frac{\pi}{2}$					
16.	(C)	According to Question, $42 = 4a + 6b$					
		and $19 = 3a + 2b$					
		Solving above equations, we get $a = 3$ and $b = 5$.					
		Thus (C) is correct option.					
17.	(A)	C					
		Corner Point Value of Z=4x+3y					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		A $(25, 0)$					
18.	(A)	C(0,24) $4(0) + 3(24) = 72$					
10.	(A)	Required Probability = P(A)P(\overline{B}) + P(\overline{A})P(B) = $\frac{4}{5} \left(1 - \frac{3}{4} \right) + \left(1 - \frac{4}{5} \right) \frac{3}{4} = \frac{1}{5} + \frac{3}{20}$					
		$=\frac{7}{20}$					
19.	(D)	$\sec^2(\tan^{-1}2)$					
		$+ \csc^2(\cot^{-1} 3)$					
		$= 1 + \tan^2(\tan^{-1} 2)$					
		$+ 1 + \cot^2(\cot^{-1} 3)$					
		$= 1 + 2^2 + 1 + 3^2 = 15$					
		Therefore, Assertion (A) is false but Reason (R) is true.					
20.	(C)	line through the points $(4.7.0)$ and $(2.2.4) = x-4$ y-7 z-8 x-4 y-7					
		line through the points (4,7,8) and (2,3.4) is $\frac{x-4}{2-4} = \frac{y-7}{3-7} = \frac{z-8}{4-8} \Rightarrow \frac{x-4}{-2} = \frac{y-7}{-4} = \frac{y-7}{4}$					
		line through the points (4,7,8) and (2,3.4) is $\frac{1}{2-4} = \frac{1}{3-7} = \frac{1}{4-8} \Rightarrow \frac{1}{-2} = \frac{1}{3-4} = \frac{1}{3-7}$					

$$\frac{z-8}{-4}$$

$$\Rightarrow \vec{r} = (4\hat{\imath} + 7\hat{\jmath} + 8\hat{k}) + \lambda(-2\hat{\imath} - 4\hat{\jmath} - 4\hat{k})$$
line through the points (-1,-2,1) and (1,2.5) is
$$\frac{x+1}{1+1} = \frac{y+2}{2+2} = \frac{z-1}{5-1} \Rightarrow \frac{x+1}{2} = \frac{y+2}{4} = \frac{z-1}{4}$$

$$\Rightarrow \vec{r} = (-\hat{\imath} - 2\hat{\jmath} + \hat{k}) + \mu(2\hat{\imath} + 4\hat{\jmath} + 4\hat{k})$$
Observed that
$$\frac{-2}{2} = \frac{-4}{4} = \frac{-4}{4} \Rightarrow \text{ the lines are parallel}$$


$$\therefore \text{ Assertion (A) is true but the Reason (R) is false.}$$

Section-B

[This section comprises of solution of very short answer type questions (VSA) of marks each]

21		
21.	[(1,3)]	1
		$\overline{2}$
	$= \{(x,y)$	
	∈ A	1
		$\overline{2}$
		1
	$=\{(x,y)\in A$	1
	$=\{(x,y)$	
	$= \{(3,1).(4,2)\}$	
22.	At the point $x=0$,	1
	f(0)	$\frac{1}{2}$
	$2\times0+1$	
	$=\frac{2\times0+1}{0-1}$	1
	U - 1 1	$\frac{1}{2}$
	<u></u>	
	$R H L = \lim_{x \to \infty} \frac{\sqrt{1 + KX} - \sqrt{1 - KX}}{x}$	
	$X \rightarrow 0^+$ $X \rightarrow 0^+$	1
	(1 + kx) - (1 - kx)	
	R. H. L = $\lim_{x \to 0^{+}} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}$ = $\lim_{x \to 0^{+}} \frac{(1 + kx) - (1 - kx)}{x(\sqrt{1 + kx} + \sqrt{1 - kx})}$	
	= k	
		
	Since, $f(x)$ is continuous at $x = 0$,	
	$L.H.L=R.H.L. = f(0) \Rightarrow k=-1$	
23.		1
	$f(x) = \cos\left(2x + \frac{\pi}{4}\right) \Rightarrow f'(x) = -2\sin\left(2x + \frac{\pi}{4}\right)$	2
		1
	Given $\frac{3\pi}{8} < x < \frac{5\pi}{8} \Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4} \Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2} \Rightarrow \sin\left(2x + \frac{\pi}{4}\right) < 0$	1
	(3 rd quadrant)	<u></u>
	<u> </u>	
	Therefore, $f'(x) < 0 \Rightarrow f(x)$ is increasing in $\left(\frac{3\pi}{8}, \frac{7\pi}{8}\right)$	

23.	By question $\frac{dy}{dt} = 2 \cdot \frac{dx}{dt}$ (i)	
(OK)	Given curve: $y = \frac{2}{3}x^3 + 1$ (ii)	1
	Differentiating with respect to t	2
	$\frac{dy}{dt} = \frac{2}{3} \cdot 3x^2 \frac{dx}{dt} \Rightarrow 2 \cdot \frac{dx}{dt} = 2x^2 \frac{dx}{dt}$ by (i)	1
	$\Rightarrow x = 1, -1$	1
	From (ii) $y = \frac{5}{3}, \frac{1}{3}$	$\overline{2}$
24.		
	d d d h	4
		$\frac{1}{2}$
	> a	2
	Given, $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{d} = 4\hat{i} + 5\hat{j}$	1
	By parallelogram law of vectors addition, \vec{d}	2
	$=\vec{a}+\vec{b}$	1
	Therefore, \vec{b}	1
	$=\vec{d}-\vec{a}$	
	$= (4\hat{i} + 5\hat{j})$	
	$-(3\hat{i}+\hat{j}+4\hat{k})$	
	$=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$	
	Thus, area of the parallelogram = $ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix} = (1+4)\hat{i} - 1 $	
	$(3-4)\hat{j} + (-3-1)\hat{k}$	
	$= 3\hat{i} + \hat{j} + 4\hat{k} $	
	$= \sqrt{5^2 + 1^2 + (-4)^2} = \sqrt{42} \text{sq. units}$	
25.	Line: $6x - 12 = 3y + 9 = 2z - 2$	1_
	Standard form of the line $:\frac{x-2}{\frac{1}{6}} = \frac{y+3}{\frac{1}{3}} = \frac{z-1}{\frac{1}{2}}$	2
	Direction ratios are $\frac{1}{6}, \frac{1}{3}, \frac{1}{2}$	1
	* * =	2
	Direction Cosines are $\frac{\frac{1}{6}}{\sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{2}\right)^2}}$, $\frac{\frac{1}{3}}{\sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{2}\right)^2}}$, $\frac{\frac{1}{2}}{\sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{2}\right)^2}}$	1
25		
	N	
OR	,	1
(OR)	,	$\frac{1}{2}$

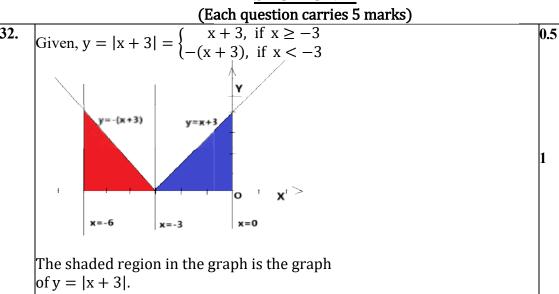
$$(\mathbf{OR}) \int \frac{\sin^{-1} x + \cos^{-1} x}{\sin^{-1} x + \cos^{-1} x} dx$$

 $= \int \frac{\sin^{-1} x - \left(\frac{\pi}{2} - \sin^{-1} x\right)}{\frac{\pi}{2}} dx$ $= \frac{4}{\pi} \int \sin^{-1} x \ dx$ $- \int dx$

Continue by using integration by parts

27.
$$\int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx$$

$$= \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx + \int_{-1}^{1} \frac{|x| + 1}{x^2 + 2|x| + 1} dx = 0 + 2 \int_{-1}^{1} \frac{|x| + 1}{(|x| + 1)^2} dx \text{ (Since, odd function } + \text{ even function)}$$


$$= 2 \int_{-1}^{1} \frac{x + 1}{(x + 1)^2} dx = 2 \log 2$$

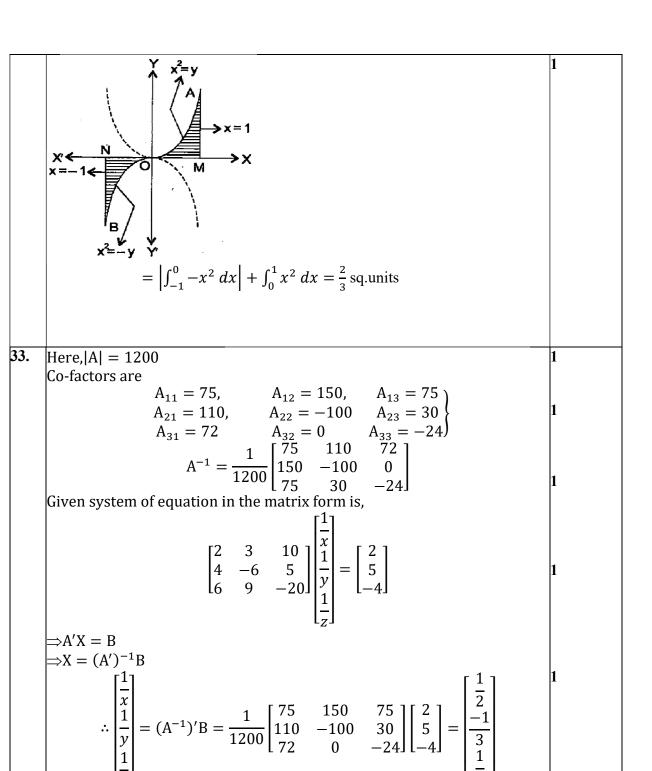
	Corner Point $Z = fix + 10y$ A(60, 0) $300 = m$ B(120, 0) 600 C(60, 30) $300 + 300 = 600 = M$ \leftarrow Maximum A(00,0) $6(120.0)$	$1\frac{1}{2}$ $\frac{1}{2}$
	Constrains: $x, y \ge 0$ (i) $x+2y \le 120$ (ii) $x+y \ge 60$ (iii) $x-2y \ge 0$ (iv)	
0.	Maximize and Minimize Z=5x+10y	
	It is linear D.E of the form $\frac{dy}{dx} + Py = Q$.	
	$\Rightarrow \frac{dy}{dy} + \frac{1}{2x} \cdot y = \frac{1 + x^2}{x}$	
	$\Rightarrow 2xy\frac{dy}{dx} + y^2 = 2y(1+x^2)$	
	ux ux	1
	$\frac{dx}{dx} = y(1 + x^2)$ $\Rightarrow x \cdot \frac{d}{dx} y^2 + y^2 \frac{d}{dx} \cdot x = 2y(1 + x^2)$	1
ŕ	$\frac{\mathrm{d}}{\mathrm{d}x}(xy^2) = 2y(1+x^2)$	1
9. OR)	Integrate on both sides	1
	$\Rightarrow \frac{\mathrm{dv}}{\sqrt{1+\mathrm{v}^2}} = \frac{\mathrm{dx}}{\mathrm{x}}$	
	ux	1
	$\Rightarrow x \frac{dv}{dy} = \sqrt{1 + v^2}$	1
	$\Rightarrow v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2x^2}}{x} = v + \sqrt{1 + v^2}$	1
	Putting $y = vx$ and $\frac{dy}{dx} = v + x \frac{dv}{dx}$	
	$\Rightarrow \frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$ (It is homogeneous differential equation)	1
9.	Given, x dy - y dx - $\sqrt{(x^2 + y^2)}$ dx = 0	
•	Method)	
	$= 2 \int \frac{1}{(z+1)(z+2)} dz$ (Apply Partial fraction	2
	Putting $z = \sqrt{x} \Rightarrow dz = \frac{1}{2\sqrt{x}} dx$	
	$\int \frac{1}{\sqrt{x}(\sqrt{x}+1)(\sqrt{x}+2)} dx$	1

1.5

31.	Let E_1 = Event that ball transferred from the first bag is white.	
	E_2 = Event that ball transferred from the first bag is black.	1
	& $E = Event that the ball drawn from the second bag is white.$	
	By total probability theorem,	
	p(E) $p(E)$ $p(E)$	1
	$P(E) = P(E_1).P\left(\frac{E}{E_1}\right) + P(E_2).P\left(\frac{E}{E_2}\right)$	
	4 10 5 9 5	1
	$=\frac{1}{0}\cdot\frac{1}{17}+\frac{1}{0}\cdot\frac{1}{17}=\frac{1}{0}$	

SECTION D

The area of the shaded region $= \int_{-6}^{0} |x + 3| \, dx$


$$= \int_{-6}^{-3} -(x+3) dx + \int_{-3}^{0} (x+3) dx$$

$$= -\left[\frac{(x+3)^2}{2}\right]_{-6}^{-3} + \left[\frac{(x+3)^2}{2}\right]_{-3}^{0} = -\left[0 - \frac{9}{2}\right] + \left[\frac{9}{2} - 0\right] = 9 \text{ sq. units}$$

32. (OR)

Given,
$$y = x|x| = \begin{cases} x^2, & \text{if } x \ge 0 \dots \dots (i) \\ -x^2, & \text{if } x < 0 \dots \dots (ii) \end{cases}$$

Required Area = Area ONBO + Area OMAO

Hence, x = 2, y = -3, z = 5

34.	Consider $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$	1	
	$\Rightarrow \frac{\mathbf{x}_1}{\mathbf{x}_1^2 + 1} = \frac{\mathbf{x}_2}{\mathbf{x}_2^2 + 1}$	I	
	$\Rightarrow x_1 x_2^2 + x_1 = x_2 x_1^2 + x_2$		
	$\Rightarrow x_1 x_2 (x_2 - x_1) = x_2 - x_1$		
	$\therefore x_1 = x_2 \text{ or } x_1 x_2 = 1$		
	We observe that there are point, x_1 and x_2 with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.	2	
	For instance, if we take $x_1 = 2$ and $x_2 = \frac{1}{2}$, we have $f(x_1) = \frac{2}{5}$ and $f(x_2) = \frac{2}{5}$		
	$\therefore x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$		
	Hence, f is not one-one.		
	Also, f is not onto for if so then for $1 \in \mathbb{R} \exists x \in \mathbb{R}$ such that $f(x) = 1$	2	
	$\Rightarrow \frac{x}{x^2+1} = 1 \Rightarrow x^2 - x + 1 = 0.$		
	A T1		
	But there is no such x in the domain R , since the equation $x^2 - x + 1 = 0$ does not give any real value of x.		
	$x^2 - x + 1 = 0$ does not give any real value of x.		
34	(i) Given, $R_1 = \{(x, y): x > y, x, y \in \mathbb{N}\}$		
(OR)	If $(x,x) \in R_1$, then $x > x$, which is not true for any $x \in N$		
	So,R is not reflexive.		, 1
	Let $(x,y) \in R_1 \Rightarrow x > y \Rightarrow y > x$, which is not true for any x , $y \in N$		$1\frac{1}{2}$
	So,R is not symmetric.		
	Let $(x,y),(y,z) \in R_1 \Rightarrow x > y$ and $y > z \Rightarrow x > z$, for any x , $y \in N$		
	So_1R_1 is transitive.		
	(ii) Given, $R_2 = \{(x, y): xy \text{ is a square of an integer }, x, y \in \mathbb{N}\}$		
	If $(x,x) \in R_2$, then $x. x = x^2$, which is a square of an integer for any $x \in N$		
	So,R is reflexive.		
	Let $(x,y) \in R_2 \Rightarrow xy = m^2$ and $yx = m^2 \Rightarrow xz = (y,x) \in R_2$		1
	So,R is symmetric.		$1\frac{1}{2}$
	Let $(x,y),(y,z) \in R_3 \Rightarrow$		4
	$xy = m^2$ and $yz = n^2 \Rightarrow xz = \frac{m^2 n^2}{v^2}$, which is square of integer		
	S_0,R_2 is transitive.		
	(iii) Given, $R_3 = \{(x,y): x + 4y = 10; x, y \in \mathbb{N}\}$		
	Then, $R_3 = \{(2,2), (6,1)\}$		
	Clearly, $(1,1) \notin R_3 \Rightarrow R_3$ is not reflexive.	2	
	$(6,1) \in R_3$ but $(1,6) \notin R_3 \Rightarrow R_3$ is not symmetric.		
	Suppose $(x,y) \in R_3 \Rightarrow x + 4y = 10$		
	And $(y,z) \in R_3 \Rightarrow y + 4z = 10 \Rightarrow x - 16z = -30 \Rightarrow (x,z) \notin R_3$		
	So, R_3 is transitive.		
35	Given: $3l + m + 5n = 0 \Rightarrow m = -5n - 3l$ (i)		
, ,	Given: $31 + m + 5n = 0 \implies m = -5n - 31$ (1) 6mn - 2nl + 5lm = 0(ii)		
	Substitute m from (i) in (ii)		. 1
	6n(-5n - 3l) - 2nl + 5l(-5n - 3l) = 0		$1\frac{1}{2}$
	$\Rightarrow -30n^2 - 18nl - 2nl - 25ln - 15l^2 = 0$		-
	$\Rightarrow -30n^2 - 45nl - 15l^2 = 0$		
	$\Rightarrow 2n^2 + 3nl + l^2 = 0$		

```
\Rightarrow 2n<sup>2</sup> + 2nl + nl + l<sup>2</sup> = 0
         \Rightarrow 2n(n + l) + l(n + l) = 0
         \Rightarrow (n + l) (2n + l) = 0
         \Rightarroweither l = -n or l = -2n
         Now if l = -n, then from (i) m = -2n
         and if l = -2n, then from (ii) m = n.
         Thus the direction ratios of two lines are proportional to -n, -2n, n and -2n,
         n, n,
         i.e. -1, -2, 1 and -2, 1, 1.
         i.e. 1,2,-1 and -2,1,1.
         Let \alpha be the angle between the lines.
                                                                                                                                                     2
         Now, \cos\alpha = \frac{1.(-2) + 2.1 + (-1).1}{\sqrt{1^2 + 2^2 + (-1)^2} \sqrt{(-2)^2 + 1^2 + 1^2}} = \frac{-1}{6}
                                                            \therefore \alpha = \cos^{-1}\left(\frac{-1}{6}\right)
35
(OR)
                                                                                                                                                    1
         Let the direction ratios of the line be \langle a, b, c \rangle
         Then L: \frac{x-1}{a} = \frac{y-2}{b} = \frac{z+4}{c} \Rightarrow DRs \operatorname{are}(a, b, c)
                                                                                                                                                    1
         A/Q the line L is perpendicular to the lines
         \mathbf{L_1}: \vec{\mathbf{r}} = (8\hat{\mathbf{i}} - 9\hat{\mathbf{j}} + 10\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{i}} - 16\hat{\mathbf{j}} + 7\hat{\mathbf{k}}) \Rightarrow \text{DRs are}(3, -16, 7)
         \mathbf{L}_2 : \vec{\mathbf{r}} = (15\hat{\mathbf{i}} - 29\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) + \mu(3\hat{\mathbf{i}} + 8\hat{\mathbf{j}} - 5\hat{\mathbf{k}}) \Rightarrow \text{DRs are}(3, 8, -5)
                                                                                                                                                    1
         Now, L is perp. to L_1 \Rightarrow 3a - 16b + 7c = 0 -----(i)
         L is perp. to L_2 \Rightarrow 3a + 8b - 5c = 0 -----(ii)
         Cross multiplying (i) and (ii)
        \begin{vmatrix} a & b & c \\ 3 & -16 & 7 \\ 3 & 8 & -5 \\ 80-56 & -15-2 & = \frac{c}{24+48} \Rightarrow \frac{a}{24} = \frac{-b}{-36} = \frac{c}{72} \Rightarrow \frac{a}{2} = \frac{b}{3} = \frac{c}{6}
                                                                                                                                                    2
         Hence, L: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}
```

Section –E

(This section comprises solution of 3 case- study/passage-based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

36	We have,			
	104/000007END-000ENDV	$2\pi rh + \pi r^2 = 75\pi$		
	⇒	$2rh + r^2 = 75$	$\Rightarrow 2rh = 75 - r^2$	

$\Rightarrow h = \frac{75 - s^2}{2r}$	
100 A	
:. Volume of cylinder $V = \pi r^2 h = \pi r^1 \times \frac{(75 - r^2)}{2r}$	
$= \frac{\pi r (75 - r^2)}{2} = \frac{\pi}{2} \times (75r - r^2)$	1
(ii) $\frac{dV}{dr} = \frac{\pi}{2} \frac{d}{dr} (75r - r^3) = \frac{\pi}{2} \times (75 - 3r^2) = \frac{3\pi}{2} (25 - r^2)$	1
(iii) (ii) For volume to be maximum, $\frac{dV}{dr} = 0$.	
$\Rightarrow \frac{3\pi}{2}(25-r^2)=0 \Rightarrow 25-r^2=0$	
$\Rightarrow r^2 = 25 \Rightarrow r = 5 \text{ cm}$	
$\frac{d^2V}{dt^2} = -3\pi r$	
uy	
$\therefore \frac{d^2V}{dr^2} \bigg _{r=0} = -3\pi \times 5 = -15\pi < 0$	
Volume is maximum when r = 5 cm	
OR	
(iii) (b) Volume V is maximum when $r = 5$ cm	
$h = \frac{75 - r^2}{2r} = \frac{25 - (5)^2}{2 \times 5} = \frac{25 - 25}{10} = \frac{50}{10} = 5$	
The state of the s	2
h = 5 cm Here, $h = r$	
∴ lt>ris false.	
37 A	
5 <u>+</u> m	
2 m	
$B \longrightarrow X \longleftarrow C \longrightarrow Y \longleftarrow E$	
Let AB= the height of the street light post = $5\frac{1}{3}$ m = $\frac{16}{3}$ m	
DC= the height of the man=2 m	
	. 1: 1.4
Given, $\frac{dx}{dt} = -1\frac{2}{3} = -\frac{5}{3}$ m/s (since the man is moving towards the	e iignt
post)	
(i) Here, ΔABE ~ΔDCE [by AAA Similarity]	
$\therefore \frac{AB}{DC} = \frac{BE}{CE} \Rightarrow \frac{\frac{16}{3}}{2} = \frac{x+y}{y} \Rightarrow \frac{16}{6} = \frac{x+y}{y} \Rightarrow 16y = 6x + 6y \Rightarrow 10$	y = 6x
$\therefore y = \frac{3}{5}x \dots (i)$	
(ii) Differentiating (i) w.r.to t	1

	$\frac{\mathrm{dy}}{\mathrm{dt}} = \frac{3}{5} \frac{\mathrm{dx}}{\mathrm{dt}} = \frac{3}{5} \cdot \left(-\frac{5}{3} \right) = -1 \text{ m/s}$						
	Hence, the length of the shadow is decreasing at the rate of						
	m/s.						
	(iii) Let z=x+y Differentiating (i) w.r.to t						
	$\frac{dz}{dt} = \frac{dx}{dt} + \frac{dy}{dt} = -\frac{5}{3} + (-1) = -\frac{8}{3} = -2\frac{2}{3} \text{ m/s}$						
	Hence, the tip of the shadow is moving at the rate of $2\frac{2}{3}$ m/s towards to						
	light post.						
38.	Bag Red Ball White Total						
	Ball						
	I 3 0 3						
	II 2 1 3						
	Let E_1 = Event that Bag I is selected \Rightarrow $P(E_1) = \frac{1}{6}$						
	E_2 = Event that Bag II is selected \Rightarrow $P(E_2) = \frac{2}{6}$						
	E_3 = Event that Bag III is selected \Rightarrow $P(E_3) = \frac{3}{6}$						
	(i) Let A= Event that a red ball is selected						
	By total probability theorem, $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)$						
	$= \frac{1}{6} \cdot \frac{3}{3} + \frac{2}{6} \cdot \frac{2}{3} + \frac{3}{6} \cdot \frac{0}{3} = \frac{7}{18}$	1					
	(ii) Let B= Event that a white ball is selected						
	By total probability theorem,						
	$P(B) = P(E_1)P\left(\frac{B}{E_1}\right) + P(E_2)P\left(\frac{B}{E_2}\right) + P(E_3)P\left(\frac{B}{E_3}\right)$						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1					
	$=\frac{1}{6} \cdot \frac{3}{3} + \frac{1}{6} \cdot \frac{3}{3} + \frac{1}{6} \cdot \frac{3}{3} = \frac{11}{18}$						
	(iii) By Baye's Theorem, we have						
	$P\left(\frac{E_2}{B}\right) = \frac{P(E_2)P\left(\frac{B}{E_2}\right)}{P(E_1)P\left(\frac{B}{E_1}\right) + P(E_2)P\left(\frac{B}{E_2}\right) + P(E_3)P\left(\frac{B}{E_3}\right)}$						
	$P\left(\frac{E_2}{R}\right) = \frac{\left(\frac{E_2}{R}\right)}{P\left(\frac{E_2}{R}\right) + P\left(\frac{E_2}{R}\right) + P\left(\frac{E_2}{R}\right)}$						
	$P(E_1)P(\overline{E_1}) + P(E_2)P(\overline{E_2}) + P(E_3)P(\overline{E_3})$						
	$\frac{2}{6}\cdot\frac{1}{2}$ $\frac{2}{18}$ 2	2					
	$= \frac{\frac{2}{6} \cdot \frac{1}{3}}{\frac{1}{6} \cdot \frac{0}{3} + \frac{2}{6} \cdot \frac{1}{3} + \frac{3}{6} \cdot \frac{3}{3}} = \frac{\frac{2}{11}}{\frac{11}{12}} = \frac{2}{11}$						
	6.3, 6.3, 6.3						

NVS RO-SHILLONG WHOLE SYLLABUS PRACTICE QUESTION PAPER SET-II (2024-25)

CLASS: XII SUBJECT: MATHEMATICS (041)

TIME: 3 HRS MAX MARKS:80

BLUE PRINT

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. **Section B** has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. **Section D** has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

CHAPTERS	MCQ (1M)	A & R (1M)	VSA (2M)	SA (3M)	LA (5M)	CSQ (4M)	TOTAL
Relations & Functions	(11/1)	(11/1)	(2111)	(5141)	(3141)	(41/1)	
Inverse Trigonometric		1	1		1		8
Functions							
Matrices & Determinants							
	5				1		10
Continuity &							
Differentiability	2		1				4
Application of Derivatives							
			1			2	10
Integrals	2			3			11
Application of Integrals							
					1		5
Differential Equations	2			1			5 5
Vector Algebra	3		1				5
Three-Dimensional							
Geometry	1	1	1		1		9
Linear Programming							
Problem	2			1			5
Probability	1			1		1	8
	18	2(1M)	5(2M)	6(3M)	4(5M)	3	80 M
	(1M)					(4M)	

NAVODAYA VIDYALAYA SAMITI - RO SHILLONG WHOLE SYLLABUS PRACTICE PAPER SET II (2024-25)

CLASS: XII

SUBJECT: MATHEMATICS (041)

Time: 3Hours Max.Marks: 80

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculators is not allowed.

SECTION A $[1 \times 20 =$

201

(This section comprises of Multiple – choice questions (MCQ) of 1 mark each.) Select the correct option (Question 1 - Question 18):

Q Let A be a square matrix of order 3 such that $adj(4A) = \lambda \, adj(A)$. Then the value of λ 1. is –

(A) 4(B) 8(C) 12(D) 16

Q
2. If the matrix $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric matrix then find the value of a and b.

(A) a = 2, b = 2 (B) a = -2, b = 3 (C) a = 2, b = -3 (D) a = 2, b = -2

- Q If $f(x) = x^2 + ax + 1$ is monotonically increasing in the interval [1,2] then minimum
- 3. value of a is

(A) -1

(B) -2

(C) 1

(D) 0

Q
4. There are two values of a which makes determinant $\Delta = \begin{bmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{bmatrix} = 86$, the sum of

these values is

(A) 4

(B) 5

(C) -4

(D) 9

If the integrating factor of the differential equation $x \frac{dy}{dx} + my = x^2 e^x$ is $\frac{1}{x^2}$ then value of

- - (A) -1
- (B) 1

Q Let A and B be two matrices such that AB is defined. If AB = 0, then which one of the

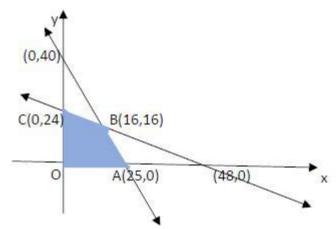
6. following can be definitely concluded?

(A) A = 0 or B = 0 (B) A = 0 & B = 0 (C) A and B are non zero square matrices

(D) A and B can not both non singular

Q Let A is a square matrix of order 3×3 such that |A| = -3, then $|-3AA^T|$ equals

7. (A) 243 (B) -243 (C) -27
Q If $P(A) = \frac{4}{5}$ and $P(A \cap B) = \frac{7}{10}$, then P(B/A) is equal to


Q If the angle between the vectors $x\hat{i} + 3\hat{j} - 7\hat{k}$ and $x\hat{i} - x\hat{j} + 4\hat{k}$ is acute, then in which

- interval x lies
 - (A) (-4,7) (B) [-4,7]
- (C) $\mathbb{R} [-4,7]$ (D) $\mathbb{R} (-4,7)$

If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 400$ and $|\vec{a}| = 4$ then $|\vec{b}|$ will be

(D) 5

Q The maximum value of z = 4x + 3y, If the feasible region for an LPP shown as in the

(A) 100 (B) 72 (C) 112(D) None of These

- $Q \int \frac{1}{x(x^4+1)} dx \text{ equals }$
- (A) $\frac{1}{4}\log_e\left(\frac{x^4+1}{x^4}\right) + C$ (B) $\frac{1}{4}\log_e\left(\frac{x^4}{x^4+1}\right) + C(C)\frac{1}{4}\log_e(x^4+1) + C(D)$ None of These

Q $\int_{0}^{\frac{\pi}{8}} tan^{2}2x \, dx$ is equal to (A) $\frac{4-\pi}{8}$ (B) $\frac{4+\pi}{8}$ (C) $\frac{4-\pi}{4}$ (D) $\frac{4-\pi}{2}$ Q $tan^{-1}x + tan^{-1}y = c$ is the general solution of the differential equation (A) $\frac{dy}{dx} = \frac{1+y^{2}}{1+x^{2}}$ (B) $\frac{dy}{dx} = \frac{1+x^{2}}{1+y^{2}}$ (C) $(1+x^{2})dy + (1+x^{2})dx = 0$

- (D) $(1 + x^2)dx + (1 + x^2)dy = 0$
- Q If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, where $a, x \in (0,1)$ then value of x is

· (A) 0 (B)
$$\frac{a}{2}$$
(C) a (D) $\frac{2a}{1-a^2}$

- Q The corner points of the feasible region determined by the system of linear constraints are:
- 16 (0,10), (5,5), (15,15), (0,20). Let z = px + qy, where p,q > 0. Condition on p and q so that the maximum of z occurs at both the points (15,15) and (0,20) is

(A)
$$p = q(B) p = 2q(C) q = 2p(D) q = 3p$$

Q
17 If the function
$$f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$ then the value of k is

Q The area enclosed between the curves $y^2 = x$ and y = |x|, is

18 (A)
$$\frac{1}{2}$$
(B) $\frac{1}{3}$ (C) $\frac{1}{6}$

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
- (C) (A) is true, but (R) is false.
- (D) (A) is false, but (R) is true.
- Q Assertion(A): The function f(x) = |x 1| + |x 2| is not differentiable at x = 1, 2.
- 19 However, it is everywhere continuous.
- Reason (R): The function f(x) = |x a| + |x b|, where a < b is everywhere continuous but not differentiable at x = a, b.
- Q Let $X = \{0, 2, 4, 6, 8\}$ and R be a relation on X defined by $R = \{(0,2), (4,2), (4,6), (8,6$
- 20 (2,4), (0,4)}.
 - Assertion (A): The relation R on set X is a transitive relation.

Reason (R): The relation R has a subset $\{(a,b),(b,c),(a,c)\}$, where $a,b,c \in X$.

SECTION B

 $12 \times 5 = 101$

(This section comprises of 5 very short answer (VSA) type-questions of 2 marks each.)

Q If
$$\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$$
 then find $\cot^{-1} x + \cot^{-1} y$.

- Q The total revenue received from the sale of x units of a product is given by $R(x) = \frac{1}{x} \int_{0}^{x} dx$
- $3x^2 + 36x + 5$. Find the marginal revenue when x = 5.

Q
23 If
$$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \cdots + to \infty}}}$$
 prove that $(2y - 1)\frac{dy}{dx} = \frac{1}{x}$

OR

If
$$x = \sqrt{a^{\sin^{-1} t}}$$
 and $y = \sqrt{a^{\cos^{-1} t}}$, $a > 0$ and $-1 < t < 1$. Show that $\frac{dy}{dx} = -\frac{y}{x}$

Q If \vec{a} and \vec{b} are non-collinear vectors, find the value of \vec{x} for which the vectors $\vec{\alpha} = (2x+1)\vec{a} - \vec{b}$ and $\vec{\beta} = (x-2)\vec{a} + \vec{b}$ are collinear.

. OR

If a line makes an angle α , β and γ with the co-ordinate axes, find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.

- Q If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ represent two adjacent sides of parallelogram,
- find unitvectors parallel to the diagonals of the parallelogram.

SECTION – C $[3 \times 6 = 18]$

(This section comprises of 6 short answer (SA) type questions of 3 marks each)

- Q A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10m/s.
- How fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? Theheight of boy is 1.5 m.
- Q The volume of a cube is increasing at a constant rate. Prove that the increase in surface is
- 27 avaries inversely as the length of the edge of the cube.

Q Find the position vector of a point R which divides the line segment joining P and Q

whose position vectors are $2\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$, externally in the ratio 1: 2. Also, show that *P* is the midpoint of the line segment *RQ*.

OR

A line passes through (2, -1, 3) and perpendicular to the line $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + \lambda(2\hat{\imath} - 2\hat{\jmath} + \hat{k})$ and $\vec{r} = (2\hat{\imath} - \hat{\jmath} - 3\hat{k}) + \mu(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$. Fid the equation of line.

Q Find
$$\int_2^8 \frac{\sqrt{10-x}}{\sqrt{x} + \sqrt{10-x}} dx$$
.

OR

Evaluate: $\int e^{2x} \left(\frac{1+\sin 2x}{1+\cos 2x} \right) dx$.

- Q Solve the Linear Programming Problem graphically:
- 30 Maximize z = 5x + 2y
- . subject to the following constraints:

$$x - 2y \le 2,$$

 $3x + 2y \le 12,$
 $-3x + 2y \le 3,$
 $x \ge 0, y \ge 0$

- Q A town has two fire extinguishing engines functioning independently. The probability of
- 31 availability of each engine, when needed, is 0.95. What is the probability that
 - (i) neither of them is available when needed?
 - (ii) an engine is available when needed?
 - (iii) exactly one engine is available when needed?

OR

Suppose that 5% of men and 0.25% of women have grey hair. A grey-haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.

$$SECTION - D [5 \times 4 = 20]$$

(This section comprises of 4 long answer (LA) type questions of 5 marks each)

- Q Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval [1, 5]. Find the area under the
- 32 curveand between the lines x = 1 and x = 5.

Q
33 Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of equations:

$$x-y+z=4$$

$$x-2y-2z=9$$

$$2x+y+3z=1$$

Q
34 If
$$y^2 = a^2 cos^2 x + b^2 sin^2 x$$
 then prove that $\frac{d^2 y}{dx^2} + y = \frac{a^2 b^2}{y^3}$.

If $x^m y^n = (x + y)^{m+n}$ prove that $\frac{dy}{dx} = \frac{y}{x}$

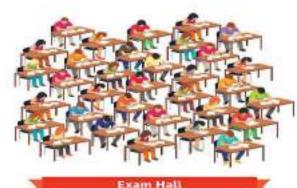
Find the image of the point (1,6,3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ also write the equation of the line joining the given point and its image and find the length of the segment joining the given point and its image.

OR

Find the shortest distance between the lines

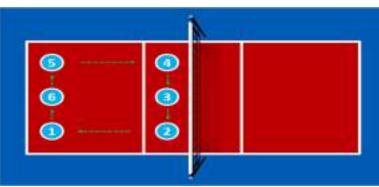
$$\vec{r} = (4\hat{\imath} - \hat{\jmath}) + \lambda(\hat{\imath} + 2\hat{\jmath} - 3\hat{k})$$
 and $\vec{r} = (\hat{\imath} - \hat{\jmath} + 2\hat{k}) + \mu(2\hat{\imath} + 4\hat{\jmath} - 5\hat{k})$.

$$SECTION - E [4 \times 3 =$$


12]

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first and third case study questions have three subparts (i), (ii), (iii) of marks 2, 1, 1 respectively. The second case study question has two subparts of 2 marks each)

- Q Read the text carefully and answer the questions:
- 36 Shama is studying in class XII. She wants do graduate in chemical engineering. Her main subjects are mathematics, physics, and chemistry. In the examination, her probabilities of getting grade A in these subjects are
 - 0.2, 0.3, and 0.5 respectively.
 - (i) Find the probability that she gets grade A in all subjects. [2 Marks]
 - (ii) Find the probability that she gets grade A in no subjects.[1 Mark]
 - (iii) Find the probability that she gets grade A in two subjects.[1 Mark]


OR

(iii) Find the probability that she gets grade A in one subject.[1 Mark]

Q Read the text carefully and answer the questions:

- 37 A volleyball player serves the ball which takes a parabolic path given by the equation
- $h(t) = -\frac{7}{2}t^2 + \frac{13}{2}t + 1, \text{ where } h(t) \text{ is the height of ball at any time t (in seconds)}, (t \ge 0)$

- (i)Is h(t) a continuous function? Justify. [2 Marks]
- (ii) Find the time at which the height of the ball is maximum. [2 Marks]
- Q Read the following passage and answer the following questions.
- Ravi and Manish are playing Ludo at home during summer vacation. While rolling the dice, Ravi's sister Jyoti observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible

outcomes.

- (i) Let $R: B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x\}$ Verify that whether R isreflexive, symmetric and transitive. [2 Marks]
- (ii) Jyoti wants to know the number of functions from A to B. Find the number of all possible functions. [1 Mark]
- (iii) Let R be a relation on B defined by $R = \{(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)\}$. Then R is which kind of relation? [1 Mark]

OR

(iii) Jyoti wants to know the number of relations possible from A to B. Find the number of possible relations. [1 Mark]

NAVODAYA VIDYALAYA SAMITI - RO SHILLONG WHOLE SYLLABUSPRACTICE PAPER SET II (2024-25)

CLASS: XII

SUBJECT: MATHEMATICS (041) MARKING SCHEME

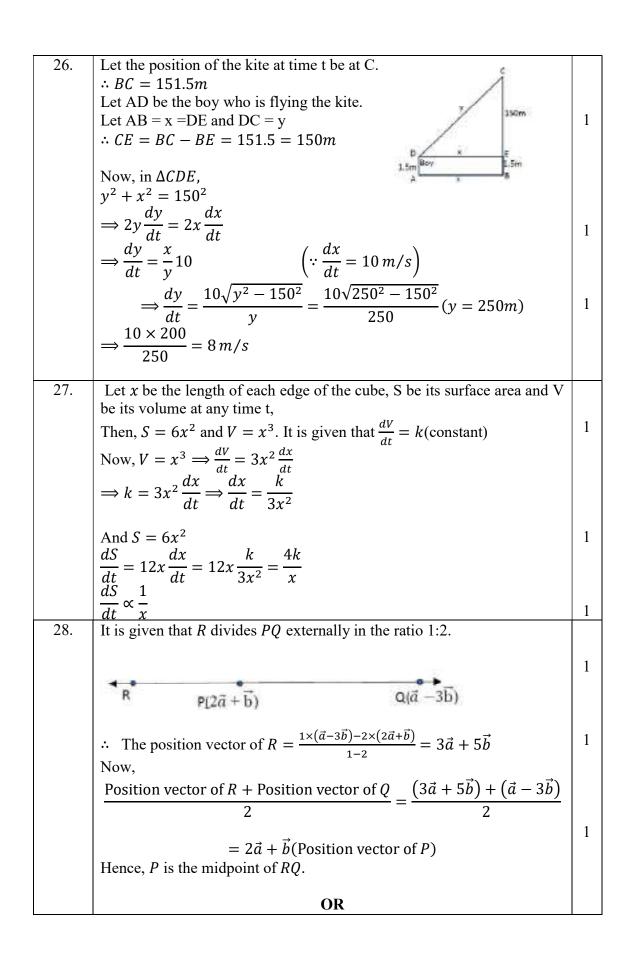
Q.No	Ans.	Hints/Solution
1.	(D)	Since A is a square matrix of order 3. Therefore, adj $(4A) = \lambda$ adj $(A) \Longrightarrow 4^2$ adj $(A)\{adj(kA) = k^{n-1} adj(A)\}$ $\lambda = 4^2 \qquad \text{where } o(A) = n$ $\lambda = 16$
2.	(B)	Since, matrix A is skew symmetric matrix.
3.	(B)	We have $f(x) = x^2 + ax + 1$ Therefore, $f'(x) = 2x + a$ Now, the function f is strictly increasing on $[1,2]$ Therefore, $\Rightarrow f'(x) > 0$ $\Rightarrow 2x + a > 0$ $\Rightarrow 2x > -a$ $\Rightarrow x > -a/2$ Here, we have $1 \le x \le 2$ Thus, $-a/2 > 1$
4.	(A)	$a > -2$ Det. is $2a^2 + 8a + 44$ Acc. to given $2a^2 + 8a + 44 = 86$ Sum of roots = -4
5.	(D)	$x \frac{dy}{dx} + my = x^{2}e^{x}$ divide by x $\Rightarrow \frac{dy}{dx} + \frac{m}{x}y = xe^{x}$ $\Rightarrow I.F. = e^{\int \frac{m}{x} dx} = \frac{1}{x^{2}}$

	1	1
		$\Rightarrow e^{mlogx} = \frac{1}{x^2}$
		$\Rightarrow e^{mlogx} = \frac{1}{x^2}$ $\Rightarrow m = -2$
6.	(C)	Since, AB is defined, neither A nor B is singular i.e., they are non-
0.	(C)	zero matrix and if AB = 0 both A and B are square matrix. So, A and B are non-zero square matrices.
7.	(B)	$ -3AA^T = (-3)^3 A A^T $
		$= (-3)^3 \times -3 \times -3$
0	(C)	= -243
8.	(6)	$P(A) = \frac{4}{5}$ $P(A \cap B) = \frac{7}{10}$
		$R(A \cap P) = 7$
		$\frac{P(A \cap B) - \overline{10}}{10}$
		$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{7/10}{4/5} = \frac{7}{8}$
9.	(C)	If angle θ is acute angle then $\vec{a} \cdot \vec{b} > 0$
		$(x\hat{\imath} + 3\hat{\jmath} - 7\hat{k}).(x\hat{\imath} - x\hat{\jmath} + 4\hat{k}) > 0$
		$x^2 - 3x - 28 > 0$
		(x+4)(x-7) > 0
10.	(D)	So, $x \in \mathbb{R} - [-4,7]$.
10.	(D)	We know that, $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a} ^2 \vec{b} ^2 \Rightarrow 400$
		$4^2 \vec{b} ^2 = 400$
		$ \vec{b} = 5$
11.	(C)	Given: $z = 4x + 3y$
		z is minimum at B(16,16) z = 4(16) + 3(16)
		z = 112
12.	(B)	$\int \frac{1}{x(x^4+1)} dx$
		Multiply and divide by 45 and by substitution was not antice D
13.	(A)	Multiply and divide by x^5 and by substitution we get option B. $I = \int_0^{\frac{\pi}{8}} tan^2 (2x) dx$
		$1 = \int_0^\infty tan^2 (2x)ax$
		$= \int_0^{\frac{n}{8}} \{sec^2(2x) - 1\} dx$
		J_0
1 /	(C)	= and operate limit on $\frac{1}{2}$ (tan $2x - x$) we get option A. We have $\tan^{-1} x + \tan^{-1} y = c$
14.	(C)	We have , $tan^{-1}x + tan^{-1}y = c$ Diff. w.r.t.x, we get
		$\frac{1}{1+x^2} + \frac{1}{1+y^2} \frac{dy}{dx} = 0,$
		$ \begin{vmatrix} 1+x^2 & 1+y^2 dx \\ (1+x^2)dy + (1+y^2)dx = 0 \end{vmatrix} $
15.	(D)	$(1+x^2)dy + (1+y^2)dx = 0$ We know that $\sin^{-1}\left(\frac{2a}{1+a^2}\right) = 2\tan^{-1}a$ for $-1 \le a \le 1$
	<u> </u>	$(1+a^2)$

		$\cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = 2 \tan^{-1} a \text{ for } 0 \le a < \infty$
		$\tan^{-1}\left(\frac{2a}{1-a^2}\right) = 2\tan^{-1}a \text{ for } -1 < a < 1$
		Using above formula we get $x = \frac{2a}{1-a^2}$.
16.	(D)	Given that maximum $z = px + qy$ occurs at both the points (15,15)
		and (0,20)
		$\therefore 15p + 15q = 0 \times p + 20 \times q$
1.7	(D)	$\Rightarrow 15p = 15q \Rightarrow 3p = q$ If $f(x)$ is continuous at $x = 0$, then
17.	(B)	If $f(x)$ is continuous at $x = 0$, then
		$\lim_{x \to 0} f(x) = f(0)$
		$\lim_{x \to 0} \left(\frac{1 - \cos 4x}{8x^2} \right) = k$
		$(2\sin^2 2x) \qquad (\sin 2x)^2$
		$\Rightarrow \lim_{x \to 0} \left(\frac{2\sin^2 2x}{8x^2} \right) = k \Rightarrow \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^2 = k$
		/
18.	(C)	$k = 1^{2} \Rightarrow k = 1$ $Area = \int_{0}^{1} (\sqrt{x} - x) dx \qquad y = -x$
		1 × Y+
		$= \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{x^2}{2} \right]^1$
		20
		$=\frac{1}{6}$
		6
		X
		•
10	(4)	Deth (A) and (D) are time and (D) is the connect avalance is a f (A)
19.	(A)	Both (A) and (R) are true and (R) is the correct explanation of (A). (By continuity and differentiability of Modulus function)
20.	(D)	We find that $(4,2)$ R and $(2,4)$ R but $(4,4) \notin R$. So, R is not transitive.
		Consequently, Assertion is not true.
		Reason is true as a relation on X is a subset of $X \times X$.
	<u> </u>	

SECTION – B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]


21.	4π π π π π π	1
	$\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5} \Rightarrow \left(\frac{\pi}{2} - \cot^{-1} x\right) + \left(\frac{\pi}{2} - \cot^{-1} y\right) = \frac{4\pi}{5}$	
	$\frac{1}{2}$	
	$\Rightarrow \pi - (\cot^{-1} x + \cot^{-1} y) = \frac{4\pi}{5}$	1
	π	1
	$\Rightarrow \cot^{-1} x + \cot^{-1} y = \frac{\pi}{5}$	
22	Since marginal revenue is the rate of change of total revenue with	
۷۷.	Since marginal revenue is the rate of change of total revenue with	

	respect to the number	
	of units sold, we have	1
	Marginal Revenue $MR = \frac{dR}{dx} = 6x + 36$	
	When $x = 5$, $MR = 6(5) + 36 = 66$	1
	Hence, the required marginal revenue is 66 Rs.	
23.		
23.	$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \cdots to \infty}}}$	
	$y = \sqrt{\log x + (y)}$	1
	On squaring both side	
	$y^2 = \log x + y$	
	Diff. w.r.t. x	
	$2y\frac{dy}{dx} = \frac{1}{x} + \frac{dy}{dx} \Longrightarrow (2y - 1)\frac{dy}{dx} = \frac{1}{x}$	1
	Hence proved.	
	OR	
	OK .	
	$x = \sqrt{a^{\sin^{-1}t}}(i)y = \sqrt{a^{\cos^{-1}t}}(ii)$ Eqn (i) multiply by Eqn (ii), we get $xy = \sqrt{a^{\sin^{-1}t + \cos^{-1}t}}$ $xy = \sqrt{a^{\frac{\pi}{2}}} \qquad \because \left\{\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right\}$ Diff. w.r.t.x $x\frac{dy}{dx} + y = 0$ $\frac{dy}{dx} = -\frac{y}{x}$	1
	Hence proved.	
		1

2.4		
24.	Given vectors $\vec{\alpha}$ and $\vec{\beta}$ will be collinear, if	1
	$\vec{\alpha} = m\vec{\beta}$ for some scalar m	1
	$\Rightarrow (2x+1)\vec{a} - \vec{b} = m\{(x-2)\vec{a} + \vec{b}\}$	
	$\Rightarrow \{(2x+1) - m(x-2)\}\vec{a} - (m+1)\vec{b} = \vec{0}$	
	$\Rightarrow (2x+1) - m(x-2) = 0 \text{ and } -(m+1) = 0$	$\begin{vmatrix} 1 \end{vmatrix}$
		1
	$\Rightarrow m = -1 \text{ and } x = \frac{1}{3}$	
	OR	
	We know that	
	$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$	1
	$1 + \cos 2\alpha$ $1 + \cos 2\beta$ $1 + \cos 2\nu$	
	$\frac{1+\cos 2\alpha}{2} + \frac{1+\cos 2\beta}{2} + \frac{1+\cos 2\gamma}{2} = 1 \qquad \because \cos^2\theta$ $= \frac{1+\cos 2\theta}{2}$	1/2
	$1 + \cos 2\theta$	
	=	1/2
	$3 + \cos 2\alpha + \cos 2\beta + \cos 2\gamma = 2$	
	$\cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$	
25.	Let ABCD be a parallelogram such that $\overrightarrow{AB} = \vec{a}$ and $\overrightarrow{BC} = \vec{b}$. Then,	
	$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$	
	$\Rightarrow \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b} = 3\widehat{\imath} + 6\widehat{\jmath} - 2\widehat{k}$	
	$ AC = \sqrt{9 + 36 + 4} = 7$	$\begin{vmatrix} 1 \end{vmatrix}$
	And $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$	1
	$\Rightarrow \overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}$	
	$\Rightarrow \overrightarrow{BD} = \overrightarrow{b} - \overrightarrow{a} = \hat{\imath} + 2\hat{\jmath} - 8\hat{k}$	
	$\Rightarrow \overrightarrow{ BD } = \sqrt{1 + 4 + 64} = \sqrt{69}$	
	$\longrightarrow \overrightarrow{AC}$ 1.	
	Unit vector along $\overrightarrow{AC} = \frac{\overrightarrow{AC}}{ \overrightarrow{AC} } = \frac{1}{7}(3\hat{\imath} + 6\hat{\jmath} - 2\hat{k})$	1 1
		2
	Unit vector along $\overrightarrow{BD} = \frac{\overrightarrow{BD}}{ \overrightarrow{BD} } = \frac{1}{\sqrt{69}} (\hat{\imath} + 2\hat{\jmath} - 8\hat{k})$	$\frac{1}{2}$ $\frac{1}{2}$
		2

SECTION – C

[This section comprises of solution short answer type questions (SA) of 3 marks each]

	The required line is perpendicular to the lines which are parallel to vectors	1
	$\vec{b}_1 = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$ and $\vec{b}_2 = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ respectively.	
	So, its parallel to the vector $\vec{b} = \vec{b}_1 \times \vec{b}_2$.	1/2
	Now $,\vec{b} = \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{vmatrix} = -6\hat{\imath} - 3\hat{\jmath} + 6\hat{k}$	
	Thus, the required line passes through the points $(2, -1, 3)$ and is parallel to the vector $\vec{b} = -6\hat{\imath} - 3\hat{\jmath} + 6\hat{k}$. So, its vector equation is	1/2
	$\vec{r} = (2\hat{\imath} - \hat{\jmath} + 3\hat{k}) + \lambda(-6\hat{\imath} - 3\hat{\jmath} + 6\hat{k})[using \ \vec{r} = \vec{a} + \lambda \vec{b}]$	1
29.	Or, $\vec{r} = (2\hat{\imath} - \hat{\jmath} + \hat{k}) + \mu(2\hat{\imath} + \hat{\jmath} - 2\hat{k})$, where $\mu = -3\lambda$ We have $I = \int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x} + \sqrt{10-x}} dx$ (i)	
		1
	$= \int_{2}^{8} \frac{\sqrt{10 - (10 - x)}}{\sqrt{10 - x} + \sqrt{10 - (10 - x)}} dx \left(\text{using property } \int_{a}^{b} f(x) dx \right)$	1
	$=\int_{a}^{b}f(a+b-x)dx$	
	$I = \int_{2}^{8} \frac{\sqrt{x}}{\sqrt{10 - x} + \sqrt{x}} dx$ (ii)	1
	Adding (i) and (ii), we get	
	$2I = \int_2^8 1 dx = 8 - 2 = 6$	1
	Hence, $I = 3$	$\frac{1}{2}$
	OR	$\frac{1}{2}$
	Let $I = \int e^{2x} \left(\frac{1+\sin 2x}{1+\cos 2x} \right) dx = \int e^{2x} \left(\frac{1+2\sin x \cos x}{2\cos^2 x} \right) dx$	1
	$= \int e^{2x} \left(\frac{1}{2} sec^2 x + \tan x \right) dx$	
		1

Put $2x = t \implies dx = \frac{1}{2}dt$
$= \frac{1}{2} \int e^t \left(\frac{1}{2} sec^2 \frac{t}{2} + \tan \frac{t}{2} \right) dt$
$I = \frac{1}{2}e^t \tan \frac{t}{2} + C = \frac{1}{2}e^{2x} \tan x + C \qquad \therefore using \int e^x (f'^{(x)} + f(x)dx = e^x f(x) + C)$

300.5

30. The subject of constraints are:

$$x - 2y \le 2$$
,
 $3x + 2y \le 12$,
 $-3x + 2y \le 3$,

$$x \ge 0, y \ge 0$$

On solving (i), we have A(0, -1), B(2, 0)

On solving (ii), we have C(0,6), D(4,0)

On solving (iii), we have E(-1,0), F(1,3)

It is observed that the feasible region OBGHJ is bounded.

Thus, we use corner point method to determine the maximum value of z, where z = 5x + 2y

Corner Point	Corresponding value of z=5x+2y
B(2,0)	10
$G(\frac{7}{2},\frac{3}{4})$	19
$H(\frac{3}{2}, \frac{15}{4})$	15
$J(0, \frac{3}{2})$	3

Hence, Z max = 19 at the point G $\left(\frac{7}{2}, \frac{3}{4}\right)$

1

2

1

1

1

1

1

1

31.	Let A denote the event that first engine is available when needed
	and B, the event that second engine is available when needed.
	Then, $P(A) = P(B) = 0.95$.

(i) Required probability =
$$P(\bar{A} \cap \bar{B})$$

= $P(\bar{A})P(\bar{B}) = (0.05) \times (0.05) = 0.0025$
 $\therefore (A, B \text{ are independent})$

(ii) Required probability =
$$P(A \cup B) = 1 - P(\overline{A})P(\overline{B})$$

= $1 - (0.05) \times (0.05) = 0.9975$
 $\therefore (A, b \text{ are independent})$

(iii) Required probability =
$$P(A) + P(B) - 2P(A \cap B)$$

= $P(A) + P(B) - 2P(A) \cdot P(B)$
= $0.95 + 0.95 - 2 \times 0.95 \times 0.95 = 0.095$

OR

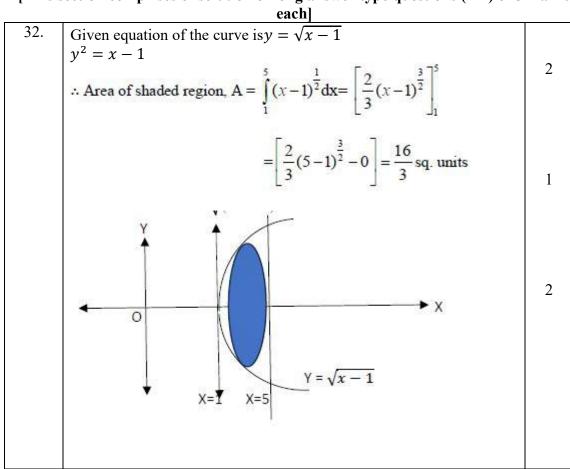
Consider the following events:

E₁= Person selected is male,

 E_2 = Person selected is female,

A = Person selected is grey haired.

Clearly,


$$P(E_1)=P(E_2)=\frac{1}{2}, P\left(\frac{A}{E_1}\right)=\frac{5}{100}, P\left(\frac{A}{E_2}\right)=\frac{1}{400}$$

$$\therefore \text{ Required probability} = P\left(\frac{E_1}{A}\right) = \frac{P(E_1)P\left(\frac{A}{E_1}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right)}$$

$$= \frac{\frac{1}{2} \times \frac{5}{100}}{\frac{1}{2} \times \frac{5}{100}} = \frac{20}{2}$$

 $=\frac{\frac{\frac{1}{2}\times\frac{5}{100}}{\frac{1}{2}\times\frac{5}{100}+\frac{1}{2}\times\frac{1}{400}}=\frac{20}{21}$

SECTION – D
[This section comprises of solution of long answer type questions (LA) of 5 marks each!

33.		+1
	Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$. Then the given product is $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{8}$	1
	$CA = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ $x = 3, y = 0$	
	$CA = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 8I_3$	
	$\begin{bmatrix} 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $\frac{1}{8}CA = I_3 \Rightarrow \left(\frac{1}{8}C\right)A = I_3 \Rightarrow A^{-1} = \frac{1}{8}C$	1
	$A^{-1} = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$	1
	The given system of equations can be written in matrix form as	
	$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix} \text{ or, AX = B,}$	1
	Where $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$	
	The solution of this system of equations is given by	
	$X = A^{-1}B = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$	
		1

34.	We have,	
	$y^2 = a^2 \cos^2 x + b^2 \sin^2 x$	
	$2y^2 = a^2(2\cos^2 x) + b^2(2\sin^2 x) = a^2(1+\cos 2x) + b^2(1-\cos 2x)$	
	$2y^{2} = (a^{2} + b^{2}) + (a^{2} - b^{2})\cos 2x$	
	(i)	
	Differentiating with respect to x, we get	
	$4y\frac{dy}{dx} = -2\left(a^2 - b^2\right)\sin 2x \Rightarrow 2y\frac{dy}{dx} = -\left(a^2 - b^2\right)\sin 2x$	
	From (i), we obtain	
	$2y^2 - (a^2 + b^2) = (a^2 - b^2)\cos 2x$	
	Squaring (ii) and (iii) and adding, we getb	
	The state of the s	1
	$4y^{2} \left(\frac{dy}{dx}\right)^{2} + \left\{2y^{2} - \left(a^{2} + b^{2}\right)\right\}^{2} = \left(a^{2} - b^{2}\right)^{2} \left(\sin^{2} 2x + \cos^{2} 2x\right)$	
	$4y^{2}\left(\frac{dy}{dx}\right)^{2} + 4y^{4} - 4y^{2}\left(a^{2} + b^{2}\right) + \left(a^{2} + b^{2}\right)^{2} = \left(a^{2} - b^{2}\right)^{2}$	
	$4y^{2}\left\{\left(\frac{dy}{dx}\right)^{2}+y^{2}-\left(a^{2}+b^{2}\right)\right\}=\left(a^{2}-b^{2}\right)^{2}-\left(a^{2}+b^{2}\right)^{2}$	1
	$4y^{2} \left\{ \left(\frac{dy}{dx} \right)^{2} + y^{2} - \left(a^{2} + b^{2} \right) \right\} = -4a^{2}b^{2}$	
	$\left(\frac{dy}{dx}\right)^{2} + y^{2} - \left(a^{2} + b^{2}\right) = -\frac{a^{2}b^{2}}{v^{2}}$	1
	Differentiating both sides with respect to x, we get	
	$2\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = \frac{2a^2b^2}{y^3}\frac{dy}{dx} \Rightarrow \frac{d^2y}{dx^2} + y = \frac{a^2b^2}{y^3}\left(\text{Dividing both sides by } 2\frac{dy}{dx}\right)$	
		1
		_
		1
		2
		<u>i</u>

	OR	
	We have,	2
	$x^m y^n = (x+y)^{m+n}$	
	Taking log on both sides, we get	
	$m \log x + n \log y = (m+n) \log (x+y)$	
	Differentiating both sides with respect to x, we get	1
	$\Rightarrow m \times \frac{1}{x} + n \times \frac{1}{y} \frac{dy}{dx} = \frac{m+n}{x+y} \frac{d}{dx} (x+y)$	
	$\Rightarrow \frac{m}{x} + \frac{n}{y} \times \frac{dy}{dx} = \frac{m+n}{x+y} \left(1 + \frac{dy}{dx} \right)$	
	$\Rightarrow \left\{ \frac{n}{y} - \frac{m+n}{x+y} \right\} \frac{dy}{dx} = \frac{m+n}{x+y} - \frac{m}{x}$	
	$\Rightarrow \left\{ \frac{nx + ny - my - ny}{y(x+y)} \right\} \frac{dy}{dx} = \left\{ \frac{mx + nx - mx - my}{(x+y)x} \right\}$	
	$\Rightarrow \frac{nx - my}{y(x + y)} \cdot \frac{dy}{dx} - \frac{nx - my}{(x + y)x} \Rightarrow \frac{dy}{dx} - \frac{y}{x}$	
35.	Let Q be the image of point $P(1, 6, 3)$ in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ and M	
	be the foot of perpendicular drawn from P to this line. Then, $PM = MQ$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	Let $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = r$	1
	Then the coordinates of M be given by $(r, 2r + 1, 3r + 2)$. The direction ratios of PM are proportional to $r - 1, 2r - 5, 3r - 1$.	
	Since PM is perpendicular to the given line. Therefore, 1(r-1) + 2(2r-5) + 3(3r-1) = 0	1

1

1

2

2

1

$$r = 1$$

So, the coordinates of M are (1, 3, 5).

Let (x_1, y_1, z_1) be the coordinates of Q. Since M is the mid-point of PQ

 $\frac{x_1+1}{2} = 1$, $\frac{y_1+6}{2} = 3$, $\frac{z_1+3}{2} = 5$ $x_1 = 1$, $y_1 = 0$, $z_1 = 7$

 $x_1=1, \qquad y_1=0, \qquad z_1=7$ Thus, the coordinates of Q are (1,0,7). So, the Cartesian equations of PQ are

 $\frac{x-1}{1-1} = \frac{y-6}{0-6} = \frac{z-3}{7-3} \text{ or } \frac{x-1}{0} = \frac{y-6}{-6} = \frac{z-3}{4}$ And $PQ = \sqrt{(1-1)^2 + (6-0)^2 + (3-7)^2} = 2\sqrt{13}$.

We know that the shortest distance between the lines $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ is

given by

 $\boldsymbol{d} = \left| \frac{(\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$

Comparing the given equations with the equations $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$

 $\overrightarrow{a_1} = (4\hat{\imath} - \hat{\jmath}), \quad \overrightarrow{b_1} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k})$ $\overrightarrow{a_2} = (\hat{\imath} - \hat{\jmath} + 2\hat{k}), \quad \overrightarrow{b_2} = (2\hat{\imath} + 4\hat{\jmath} - 5\hat{k})$ $(\overrightarrow{a_2} - \overrightarrow{a_1}) = -3\hat{\imath} + 0\hat{\jmath} + 2\hat{k}$ $\overrightarrow{b_1} \times \overrightarrow{b_2} = 2\hat{\imath} - \hat{\jmath} + 0\hat{k}$ $|\overrightarrow{b_1} \times \overrightarrow{b_2}| = \sqrt{5}$ $d = \left| \frac{(-3\hat{\imath} + 0\hat{\jmath} + 2\hat{k}) \cdot (2\hat{\imath} - \hat{\jmath} + 0\hat{k})}{\sqrt{5}} \right|$ $d = \left| \frac{-6}{\sqrt{5}} \right| = \frac{6}{\sqrt{5}}$

SECTION - E

36. (i) P(Grade A in Maths) = P(M) = 0.2 P(Grade A in Physics) = P(P) = 0.3 P(Grade A in Chemistry) = P(C) = 0.5 $P(\text{not A garde in Maths}) = P(\overline{M}) = 1 - 0.2 = 0.8$ $P(\text{not A garde in Physics}) = P(\overline{P}) = 1 - 0.3 = 0.7$ $P(\text{not A garde in Chemistry}) = P(\overline{C}) = 1 - 0.5 = 0.5$ $P(\text{getting grade A in all subjects}) = P(M \cap P \cap C) = P(M) \times P(P) \times P(C)$

$= 0.2 \times 0.3 \times 0.5 = 0.03$	1
(ii) P(getting grade A in no subjects)= $P(\overline{M}) \times P(\overline{P}) \times P(\overline{C}) = 0.8 \times 0.7 \times 0.5 = 0.280$	1
(iii) P(getting grade A in 2 subjects) $\Rightarrow P(M \cap P \cap \overline{C}) + P(\overline{M} \cap P \cap C) + P(M \cap \overline{P} \cap C)$ $\Rightarrow 0.2 \times 0.3 \times 0.5 + 0.3 \times 0.5 \times 0.8 + 0.2 \times 0.5 \times 0.7$	1
$\Rightarrow 0.03 + 0.12 + 0.07 = 0.22$ P(getting grade A in 2 subjects) = 0.22 OR	1
P(getting grade A in 1 subjects) $\Rightarrow P(M \cap \overline{P} \cap \overline{C}) + P(\overline{M} \cap P \cap \overline{C}) + P(\overline{M} \cap \overline{P} \cap C)$ $\Rightarrow 0.2 \times 0.7 \times 0.5 + 0.3 \times 0.5 \times 0.8 + 0.5 \times 0.8 \times 0.7$ $\Rightarrow 0.07 + 0.12 + 0.028 = 0.47$ P(getting grade A in 1 subjects) = 0.47	1
37. (i)	
Given $h(t) = -\frac{7}{2}t^2 + \frac{13}{2}t + 1(t \ge 0)$ It is a polynomial (in t) so it is a continuous function. Since every polynomial function is continuous function	2
(ii) $h(t) = -\frac{7}{2}t^2 + \frac{13}{2}t + 1(t \ge 0)$	
For height to be maximum or minimum $\frac{dh}{dt} = 0$ $\Rightarrow -7t + \frac{13}{2} = 0 \Rightarrow t = \frac{13}{14}$	1
$\frac{d^2h}{dt^2} = -7 < 0$ $\Rightarrow h(t) \text{ is maximum at } t = \frac{13}{14} \sec$	1
38. (i) Given: $R: B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x\}$ Reflexive: Let $x \in B$, since x always divide x itself $\Rightarrow (x, x) \in R$. So	
reflexive. Symmetric: $(1,6) \in R$ as 6 is divisible by 1 but $(1,6) \notin R$ So not symmetric.	2
Transitive: let $(x, y) \in R \Rightarrow y$ is divisible by $x \Rightarrow y = \lambda x$ let $(y, z) \in R \Rightarrow z$ is divisible by $y \Rightarrow z = \mu y \Rightarrow z = \mu$. $\lambda x \Rightarrow z$ is divisible by $x \Rightarrow z = \mu x$	
$\Rightarrow (x, z) \in R \Rightarrow$ So transitive. Hence the given relation is Reflexive and Transitive but not Symmetric.	1

(ii)We have,

$$A = \{S, D\} \Rightarrow n(A) = 2 \text{ and},$$

 $B = \{1, 2, 3, 4, 5, 6\} \Rightarrow n(B) = 6$

Number of functions from A to B is $6^2 = 36$.

1

1

(iii) Given, R be a relation on B defined by

$$R = \{(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)\}$$

R is not reflexive since $(1, 1), (3, 3), (4, 4) \notin R$

R is not symmetric as $(1,2) \in R$ but $(2,1) \notin R$

and, R is not transitive as $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$

So *R* is neither reflexive nor symmetric nor transitive

OR

$$n(A) = 2$$
, $n(B) = 6 \Rightarrow n(A \times B) = 12$
Total number of possible relations from A to B = 2^{12}

NVS RO-SHILLONG WHOLE SYLLABUS PRACTICE QUESTION PAPER SET-III (2024-25)

CLASS: XII SUBJECT: MATHEMATICS (041)

TIME: 3 HRS MAX MARKS:80

BLUE PRINT

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. **Section B** has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. **Section D** has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Unit	Typology of questions			Total
	Remembering and	Applying	Analysing, Evaluating and creating	
	Understanding			
1.Relations	1x2 = 2		4x1=4	8
and	2x1=2			
functions.				
2.Algebra	1x3=3			10
	2x1=2			
	5x1=5			
3.Calculus	1x7=7	3x3=9	4x1=4	35
	2x1=2		5x1=5	
	5x1=5		2x1=2	
			1x1=1	
4. Vector and	1x3=3	5x1=5		14
Three	3x2=6			
dimensional	5x1=5			
Geometry				
5.Linear	2x1=2			5
Programming	3x1=3			
6.Probalbility	1x2=2	4x1=4		8
		2x1=2		
Total	44	20	16	80

Navodaya Vidyalaya Samiti, RO Shillong WHOLE SYLLABUS PRACTICE PAPER SET-III (2024-25)

Class-XII

Subject: Mathematics (041)

Time:3 Hours Maximum Marks:80

General Instructions

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. **Section E** has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
- 7.Use of calculators is **not** allowed.

- Q1. If A, B are square matrices of order 3, A in non singular and AB = 0, then B is
 - a) Non singular matrix.
- b) null matrix
- c) singular
- d) unit

b)

- Let R be a relation in the set N given by $R = \{(a,b) : a + 2 = b, b > 6\}$. Choose the Q2. a) $(2,4) \in R$, b) $(3.8) \in R$ c) $(6.8) \in R$ correct answer: d) (8,7) $\in R$.
- If A is a 2 rowed square matrix and I A I = 6 then A. adj A = ?

a)
$$\begin{bmatrix} 1/6 & 0 \\ 0 & 1/6 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & 0 \\ 3 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$

b)
$$\begin{bmatrix} 3 & 0 \\ 3 & 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$d)\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

If x , y , z are non zero real numbers , then the inverse of matrix $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \end{bmatrix}$ Q4.

is

a)
$$\frac{1}{xyz}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$d) \frac{5yz}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 b) $= \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$ c) $\frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$

c)
$$\frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$

$$d) \frac{5yz}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- The differential equation of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$, is called Q5.
 - a) Non homogeneous differential equation
 - b) homogeneous differential equation

	c) linear differential equation	d) non linear differential equati	on
Q6.	Range of cosec ⁻¹ x is a) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ b) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ - $\{0\}$	c) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ d) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	$\left[\frac{\tau}{2}\right] - \{1\}$
Q7.	$\int_{-\pi}^{\pi} \sin^{2025} x \ dx = ?$	2-	-
	a) 0 b) $\frac{5\pi}{16}$ c) 2π	T	
Q8.	The Cartesian equation of a line are $\hat{\vec{r}}$ a) $\vec{r} = (\hat{\imath} - 2\hat{\jmath} + 5\hat{k}) + \gamma(2\hat{\imath} + 3\hat{\jmath} - \hat{k})$		
	c) $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - 5\hat{k}) + \gamma(2\hat{\imath} + 3\hat{\jmath} - \hat{k})$	(\hat{k}) d) $\vec{r} = (\hat{i} - 3\hat{j} + 5\hat{k}) + \hat{j}$	$y(2\hat{\imath}+3\hat{\jmath}-$
Q9.	The integrating factor of the difference a) X b) x ² b)	ential equation $x \frac{dy}{dx} + y = x^2$ c) $1/x$ d) $-x$.	, is
Q10.	Which of the following function is de	ecreasing in $(0,\frac{\pi}{2})$?	
Q11.	a) $\sin 2x$ b) $\tan x$ c) $\cos x$ b) $\int \frac{1+\tan x}{1-\tan x} dx$ is equal to:	x d) cos 3x	
	a) $\operatorname{Sec}^{2}(\frac{\pi}{4} - x) + c$ b) $\operatorname{Sec}^{2}(\frac{\pi}{4} - x)I + c$	$c^2 \left(\frac{\pi}{4} + x\right) + c$ c) log Ise	$c(\frac{\pi}{4}-x)I+c$
Q12.	The point of discontinuity of the fun	action $f(x) = \begin{cases} 2x + 7, & \text{if } x \\ 2x - 7, & \text{if } x > \end{cases}$	$x \le 2$, is
	a) $X=2$ b) $x = -1$ The three points $P(-1,3,2)$, $Q(-4,0)$	c) $x = 0$ d) $x = 1$,2, -2), and R(5,5,k) are colline	ar then the
	a) 5 b) 10	c) 8	1) 7
Q14. A'∩ B'	If A and B are two events such that /) equals to		$= \frac{1}{4}$, then P (
015	a) $1/12$ b) $3/16$	c) ¹ / ₄ d)3/4	
	If $y = \log(\frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2} - x})$, then $dy/dx =$		
Q16.	a) $\frac{-2}{\sqrt{1+x^2}}$ b) $\frac{2\sqrt{1+x^2}}{x^2}$ Sin(tan ⁻¹ x), IxI<1, is equal to a) $\frac{x}{\sqrt{1-x^2}}$ b) $\frac{1}{\sqrt{1-x^2}}$	c) $\frac{2}{\sqrt{1+x^2}}$ d) none of the	ese.
	12 10	12:10	<u> </u>
	Let the vectors \vec{a} and \vec{b} such that	$I \vec{a} I = 3 \text{ and } I \vec{b} I = \frac{\sqrt{2}}{3}$, if	$\vec{a} \times \vec{b}$ is a
unit ve	ector then angle between \vec{a} and \vec{b} is a) $\frac{\pi}{4}$ b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$ d) $\frac{\pi}{2}$	
Q18. appear	Probability that A speaks truth is $4/5$ rs. The probability that it was actually	5. A coin is tossed. A reports th	aat a head

- a) 4/5
- b) ½
- c) 1/5
- d) 2/5

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each.

Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.
- Q19. If R is the relation in the set $A = \{1, 2, 3, 4, 5\}$ given $R = \{(a, b) : I a b I \text{ is even }\}$,

Assertion (A): R is an equivalence relation.

Reason (R): All elements of $\{1,3,5\}$ are related to all elements of $\{2,4\}$.

Q20. Assertion (A): The rate of change of area of a circle with respect to its radius r = 6 cm is 12π cm² / cm.

Reason (R): Rate of change of area of a circle with respect to its radius r is dA/dr, where A is the area of the circle.

SECTION B

[2x5=10]

(This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)

Q21. Write the interval for the principal value of function $\cos^{-1}x$ and draw its graph.

OR

Find the value of $\tan^{-1}(\tan \frac{2\pi}{3})$

- Q22. Two dice are thrown together. Let A be the event: Getting 6 on the first die, B be the event: getting 2 on the 2nd die. Are the events A and B are independent?
- Q23. Find the intervals in which the function given by $f(x) = \sin 3x$, $x \in [0, \frac{\pi}{2}]$, is (a) increasing, (b) decreasing.

Find the intervals in which the function f given by $f(x) = 4x^3 - 6x^2 - 72x + 30$ is (a) increasing, (b) decreasing.

Q24. Integrate : $\int \frac{xe^x}{(1+x)^2} dx$

Q25. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find k so that $A^2 = kA - 2I$.

SECTION C

[3x6=18]

(This section comprises of 6 short answer (SA) type questions of 3 marks each.)

Q26. Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\cos x + \sin x} dx$$

Q27. Find the shortest distance between the lines
$$\vec{r} = (\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) + \gamma(\hat{\imath} - 3\hat{\jmath} + 2\hat{k})$$
 and

$$\vec{r} = (4\hat{\imath} + 5\hat{\jmath} + 6\hat{k}) + m(2\hat{\imath} + 3\hat{\jmath} + \hat{k})$$

Q28. Minimise
$$Z = 3x + 5y$$
 subject to the constraints:

$$X + 2y \ge 10$$
, $x + y \ge 6$, $3x + y \ge 8$, $x, y \ge 0$

Solve graphically the following linear programming problem:

Maximise, Z = 6x + 3y, subject to the constraints:

$$4x + y \ge 80$$
, $3x + 2y \le 150$, $x + 5y \ge 115$, $x , y \ge 0$

- Q29. Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.
- Q30. Find dy/dx, $y = x^{sinx} + 4^x$.
- Q31. If $\vec{a} = (5 \hat{i} \hat{j} 3\hat{k})$ and $\vec{b} = (\hat{i} + 3\hat{j} 5\hat{k})$, then check whether $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular to each other.

SECTION D
$$[5x4=20]$$

(This section comprises of 4 long answer (LA) type questions of 5 marks each)

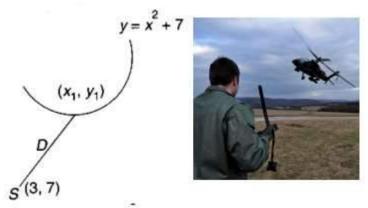
- Q32. Given $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$, find AB and use the product to solve the system of equation : x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1
- Q33. Using integration, find the area of the region in the first quadrant enclosed by the Y-axis, the line y = x and the circle $x^2 + y^2 = 32$.
- Q34. Find the perpendicular distance of the point (1, 0, 0) from the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$. Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
- Q35 Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is of the volume of the sphere.

OR

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

SECTION- E
$$[4x3=12]$$

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks


1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

Q36 Let $A = \{1, 2, 3,9\}$ and R be the relation in A x A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A xA.

- i) Write yes or no. Relation is reflexive. (1)
- ii) Whether R symmetric? (1)
- iii) Write the elements related to (2,5). OR

show that R is an equivalent relation?

37. Read the following text carefully and answer the questions that follow: An Apache helicopter of the enemy is flying along the curve given by $y = x^2 + 7$.

A soldier, placed at (3, 7) want to shoot down the helicopter when it is nearest to him.

- i. If P (x_1, y_1) be the position of a helicopter on curve $y = x^2 + 7$, then find distance D from P to soldier place at (3, 7) in terms of x. (1)
- ii. Find the critical point such that distance is minimum. (1)
- iii. Verify by second derivative test that distance is minimum at (1, 8). (2) OR

Find the minimum distance between soldier and helicopter? (2)

38. Nisha and Ayushi appeared for first round of an interview for two vacancies.

The probability of Nisha's selection is 1/3 and that of Ayushi's selection is 1/2.

- i) Find the probability that only one of them is selected. (1)
- ii) The probability that none of them is selected. (1)
- iii) Find the probability that at least one of them is selected. (2) OR

Find the probability that both of them are selected. (2)

NVS RO SHILLONG WHOLE SYLLABUS PRACTICE PAPER SET III (2024-2025) MARKING SCHEME CLASS XII MATHEMATICS(CODE-041)

Q.No	Answer	Mark
1	c) singular	1
2	c) (6,8)	1
3	$d)\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$	1
4	b)	1
5	b) homogeneous differential equation	1
6	b) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \left\{0\right\}$	1
7	a) 0	1
8	d) $\vec{r} = (\hat{\imath} - 3\hat{\jmath} + 5\hat{k}) + \gamma(2\hat{\imath} + 3\hat{\jmath} - \hat{k})$	1
9	a) x	1
10	c)cosx	1
11	(d)	1
12	a) x=2	1
13	c)8	1
14	c) ¹ / ₄	1
15	c)	1
16	$d) \frac{x}{\sqrt{1+x^2}}$	1
17	$b)\frac{\pi}{4}$	1
18	a) 4/5	1
19	c) A is true but R is false	1
20	a) Both A and R is true and R is the correct explanation of A.	1
21	Range of $\cos^{-1} x$ is $[0,\pi]$ OR, $-\pi/3$	2
22	$V=4/3 \pi r^3$, $dv/dt = 8/3 \pi r^2 dr/dt$,	1/2
	$25 = 8/3 \pi r^2 dr/dt, dr/dt = \frac{75}{8\pi r^2},$	1/2
	Now, $S = 4 \pi r^2$	
	Ds/dt = 8 π r dr/dt = 8 π r. $(\frac{75}{8\pi r^2})$ = 75/r = 75/5 = 25 cm ² /s	1

23	$f(x) = \sin 3x$, $f'(x) = 3 \cos 3x$	1/2
	$f'(x)=0$, $\cos 3x = 0 = 3x = \frac{\pi}{3}$, $\frac{3\pi}{3}$ as $x \in [0, \frac{\pi}{3}]$	1/2
	$x = \frac{\pi}{\epsilon}, x = \frac{\pi}{2}$	1/2
	$f(x)$ is increasing in $[0, \frac{\pi}{6})$, and decreasing in $(\frac{\pi}{6}, \frac{\pi}{2})$	1/2
	OR, $F(x) = 4x^3 - 6x^2 - 72x + 30$	
	$f'(x) = 4x^2 - 6x - 72x + 30$ $f'(x) = 12x^2 - 12x - 72 = 12(x - 3)(x + 2).$	1/2
	$f'(x) = 0 \Rightarrow x = -2, 3.$	1/2
	Here, $f(x)$ is increasing in $(-\infty, -2) \cup (3, \infty)$, Decreasing in $(-2,3)$.	1
2.4		1/
24	$\int \frac{xe^x}{(1+x)^2} dx = \int \frac{(1+x-1)e^x}{(1+x)^2} dx$	1/2
	$= \int \left[\frac{1+x}{(1+x)^2} - \frac{1}{(1+x)^2} \right] e^x dx = \int \left[\frac{1}{(1+x)} - \frac{1}{(1+x)^2} \right] e^x dx$	1
	$=e^{x}\frac{1}{1+x}+c$	1/2
25	$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}, A^2 = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$	1/2
	Now, $A^2 = kA - 2I = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3k & -2k \\ 4k & -2k \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$	1
	$\Rightarrow K = 1$	1/2
26	Let, $I = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\cos x + \sin x} dx$,(i)	1/2
	$= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}(\frac{\pi}{2} - x)}{\cos(\frac{\pi}{2} - x) + \sin(\frac{\pi}{2} - x)} dx ,$ $= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2} x}{\cos x + \sin} dx, \dots (ii)$ Adding (i) and (ii) :	1/2
	$2I = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x + \sin^2 x}{\cos x + \sin x} dx,$ $2I = \int_0^{\frac{\pi}{2}} \frac{1}{\cos x + \sin x} dx,$	1/2
	$=\int_0^{\frac{\pi}{2}} \frac{1}{\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}} dx,$	
	$= \int_0^{\frac{\pi}{2}} \frac{1 + tan^2 \frac{x}{2}}{1 - tan^2 \frac{x}{2} + 2tan^2 \frac{x}{2}} dx$	1/2
	Let, $\tan \frac{x}{2} = t$. Then, $d(\tan \frac{x}{2}) = dt$, $(\sec^2 \frac{x}{2})1/2 dx = dt$,	
	Also, $x=0$, $t = \tan 0 = 0$, $x = \frac{n}{2}$, $t = \tan \frac{n}{4} = 1$,	
	$2I = \int_0^1 \frac{2dt}{2t+1-t^2} = 2\int_0^1 \frac{dt}{(\sqrt{2})^2 - (t-1)^2}$	1
	$=2\frac{1}{2\sqrt{2}}\log\left \frac{\sqrt{2}+(t-1)}{\sqrt{2}-(t-1)}\right \begin{cases} 1\\0 = \frac{1}{\sqrt{2}}\log\left \frac{\sqrt{2}+1}{\sqrt{2}-1}\right \end{cases}$	

		1			
27	Here, $\overrightarrow{a_1} = (\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$, $\overrightarrow{b_1} = (\hat{\imath} - 3\hat{\jmath} + 2\hat{k})$				
21					
	$\overrightarrow{a_2} = (4 \hat{\imath} + 5 \hat{\jmath} + 6 \hat{k}), \overrightarrow{b_2} = (2 \hat{\imath} + 3 \hat{\jmath} + \hat{k})$	1/2			
	$\overrightarrow{a_2} - \overrightarrow{a_1} = = (3 \hat{\imath} + 3\hat{\jmath} + 3\hat{k})$	/ -			
	$\begin{bmatrix} \hat{i} & \hat{j} & k \end{bmatrix}$	1			
	$\vec{b_1} \vec{X} \vec{b_2} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{bmatrix} = -7\hat{i} + 0.\hat{j} + 9\hat{k}$				
	Hence, SD = $\frac{(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \overrightarrow{X} \overrightarrow{b_2})}{ \overrightarrow{b_1} \overrightarrow{X} \overrightarrow{b_2} } = \frac{6}{\sqrt{112}}$	1			
28	Drawing of graph and finding of feasible region ABCD:		1	1/2	
20	Corner points Value of Z		•	7 2	
	(0,8) 40				
	(1,5) 28				
	(2,4) 26(minimum)		1	1/2	
	(10,0) 30				
29	Drawing correct figure			1	
	Solving $4y = 3x^2$, $2y = 3x + 12$ gives, $x = -2, 4$			1/2	
	Area = $\int_{-2}^{4} \frac{3x+12}{2} dx - \int_{-2}^{4} \frac{3}{4} x^2 dx = 30$ units.			1 ½	
20	Taking $u = x^{\sin x}$ of $y = x^{\sin x} + 4^x$,			1/	
30	1 aking $u = x$ or $y = x + 4$, $Y = u + 4^{x}$			1/2	
	1 - u + 4				
	$Dy/dx = du/dx + d/dx(4^{x})$			1/2	
	$= \frac{du}{dx} + 4^{x} (\log 4) \dots (i)$			7 2	
	Now, $u = x^{\sin x}$,				
	Log(u) = sinxlogx			1/2	
	Differentiating w.r.t x:				
	$1/u \ du/dx = \sin x/x + \log x \cos x$				
	$Du/dx = u(\sin x/x + \log x \cos x)$				
	$Du/dx = x^{\sin x} (\sin x/x + \log x \cos x)$			1	
	Thus from (i); $dy/dx = x^{\sin x} (\sin x/x + \log x \cos x) + 4^{x} (\sin x/x + \log x \cos x)$	log4)			
2.1					
31	$\vec{a} + \vec{b} = (5 \hat{i} - \hat{j} - 3\hat{k}) + (\hat{i} + 3\hat{j} - 5\hat{k}) = (6 \hat{i} + 2\hat{j} - 8)$,		1	
	$ \vec{a} - \vec{b} = (5 \hat{i} - \hat{j} - 3\hat{k}) - (\hat{i} + 3\hat{j} - 5\hat{k}) = (4 \hat{i} - 4\hat{j} + 2\hat{k})$	$\hat{\epsilon}$)		1	
	$(\overrightarrow{a} + \overrightarrow{b}).(\overrightarrow{a} - \overrightarrow{b}) = 24-8-16=0$			1 1/2	
				1 ½	
	Hence, $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each				
	other.			1/2	
	1	I			

32	Here, AB= $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$ =8 I	1 1/2
	Hence, $A^{-1} = \frac{B}{8}$,	1/2
	Now the system can be written as , $AX = D$,	
	Where, $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $D = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$,	1/2
	Hence, $X = A^{-1}D$,	1/2
	$= \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$	2
33	Given, equation of circle is $x^2 + y^2 = 32$ (i) Given ,equation of line is $y = x$ (iii)	
	Solving (i) and (ii) to get the points of intersection are $(4, 4)$ and $(-4, -4)$.	1
	So, given line and the circle intersect in the first quadrant at point A(4, 4) and The circle cut the Y-axis at point B $(0,4\sqrt{2})$. Proper sketch of the graph of given curves,	1
	Area of the required region: $\int_0^4 y dy + \int_4^{4\sqrt{2}} \sqrt{32 - y^2} dy$	1
	$= \left[\frac{y^2}{2}\right] + \left[\int_4^{4\sqrt{2}} \sqrt{(4\sqrt{2})^2 - y^2} dy$ $= \frac{1}{2}(16-0) + \left[\frac{y\sqrt{(4\sqrt{2})^2 - y^2}}{2} + \frac{(4\sqrt{2})^2}{2}sin^{-1}\frac{y}{4\sqrt{2}}\right] 4\sqrt{2}$	1
	$=4\pi$ unit	1
34	Any point P on the line is $(2k + 1, -3k - 1, 8k - 10)$ Let P be the foot of the perpendicular drawn from A $(1,0,0)$	1/2
	Hence D R of PA is $2k$, -3 $k-1$, $8k-10$. Since DR of the given line is 2 , -3 , 8 .	1/2
	Hence, $2(2k) + (-3)(-3k - 1) + 8(8k - 10) = 0$	1/2
	$77k = 77 \Rightarrow k = 1.$	1/2
	Hence foot of the perpendicular is $(3, -4, -2)$	1/2
	The equation of the perpendicular with DR 2, -4, -2 is $x - 3$ $y + 4$ $z + 2$	1/2
	$\frac{x-3}{2} = \frac{y+4}{-4} = \frac{z+2}{-2}$	2
35	P(A)= 1/3, $P(A') = 1 - 1/3 = 2/3$, $P(B) = 1/2$, $P(B') = 1/2$	1
	i) P(only one of them is selected) = $P(A)P(B') + P(A')P(B)=1/3 \cdot 1/2 + 2/3 \cdot 1/2 = 3/6 = 1/2$	2
	ii) P(at least one of them will be selected)	_
1	= 1 - P(none of them will be selected)	1

	= $1 - P(A' \cap B') = 1 - 2/3 \cdot \frac{1}{2} = 1 - 1/3 = 2/3$	1
36	i) Yes reflexive.	1
	ii) Symmetric.	1
	iii)	
37	i) Distance of the point $P(x,y)$ from $(3,7)$ is	
	$D = \sqrt{(x-3)^2 + (y-7)^2} = \sqrt{(x-3)^2 + (x^2 + 7 - 7)^2}$	
	$=\sqrt{(x-3)^2+(x^2)^2}=\sqrt{(x-3)^2+x^4}$	1
	ii) Now, for extreme value of D, d/dx (D ²) = 0 2(x-3) + 4x ³ = 0 => 2x ³ + x - 3 = 0 => x= 1.	1
	For, $x = 1$, $y = 8$.	
	iii) $d^2D/dx^2 = 2 + 12x^2$, which is + ve for x = 1.	1+1
	Hence D is minimum at the point (1,8).	1 7 1
38	l) 1/2	
	ii)1/3	
	iii)2/3	
	OR	
	1/6	

NVS RO-SHILLONG WHOLE SYLLABUS PRACTICE QUESTION PAPER SET-IV (2024-25)

CLASS: XII

SUBJECT: MATHEMATICS (041)

TIME: 3 HRS MAX MARKS:80

BLUE PRINT

÷

Blue Print-2025(AS PER CBSE)

Class 12

		Section A		Section B	Section C	Section D	Section E	
	Type of Questions []	MCQ Type	Assertion and Reason Type	Very Short Answer type	Short Answer Type	Long	Case Study Type	Total Marks(No. of
	Marks []	1M	1M	2M	3M	5M	4)(Questions)
SINo.	Chapter []	1	68	Number	of Questions	8 0		
1	Relations and Functions	-	1	-			1	5(2)
1	Inverset Trigonometry	1		1		-9 5 8-7		3(2)
3	Matrices	1	- 	-	-	953	-	2(2)
4	Determinants	3	a we			1	- 52	8(4)
5	Continuity and Differentiability	1	1	1*	<u> </u>		<u> </u>	4(3)
6	Applications of Derivatives	1	200	1	2	\$223	1	13(5)
1	Integral	2		-	1*	144		5(3)
8	Applications of Integration	1			- 1	1		6(2)
9	Differential Equations	2		-		1"		7(3)
10	Vector Aigebra	2	-	748			_	6(4)
11	3-D Geometry	0.00		J	1*	1*		8(2)
12	LP?	2	· -	-	1			5(3)
13	Probability	1	-		1*	3 - S 23 33 - V	1	8(3)
	Total	18	2	i	6	4	1	80(38)

^{*}means internal option

Navodaya Vidyalaya Samiti, RO Shillong WHOLE SYLLABUS PRACTICE PAPER SET-IV (2024-25)

Class-XII

Subject: Mathematics (041)

Time:3 Hours Maximum Marks:80

General Instructions

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. **Section A** has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

7.Use of calculators is **not** allowed.

Section A

This section contains multiple choice question (MCQ) of 1 mark each

		/0	\boldsymbol{k}	-2	
1.	If a matrix A =	3	0	3	is a singular matrix. Then the value of k is
		\2	-3	0 /	
	۸) 2				D) 2

C) all real values

- D) None of these
- 2. The number of square matrices or order 3 x 3 whose every entry is either -1 or 3 is
 - B) 9

B) 18

C) 512

- D) None of these
- 3. Function $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x 102$ is
 - A) Increasing C) Decreasing

- B) Strictly increasing
 - D) Strictly decreasing
- 4. If |A| = 4 where A is a square matrix of order 3, then the value of |A| + |A'| is
 - A) 64

B) 12

C) 20

- D) None of these
- 5. Integrating factor of the differential equation $\frac{dy}{dx} + \frac{y}{x} = logx$ is
 - A) logx

C) **e**^x

D) none of these

6.	The diagonal elements of a skew-symmetric	e matrix are
	A) 0	B) 1
	C) - 1	D) None of these
7.	If a matrix $A = \begin{pmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{pmatrix}$ is a symm	etric matrix. Then the correct
	statement from the following is	D) $ab = 1$
	B) ab =1	B) $ab = -1$ D) $a + b = -\frac{13}{6}$
	C) $a + b = \frac{5}{6}$	D) $a + b = -\frac{a}{6}$
8.	In a single throw of a die, A = event of getting prime numbers, then	ng odd numbers and $B = \text{event of}$
	B) A and B are independent events events	B) A and B are not independent
	$C) P(A B) = \frac{1}{3}$	D) None of these
9.	Projection of the vector $\vec{a} = \hat{i} - 2\hat{j} + 4\hat{k}$ or	in the vector $\overrightarrow{\boldsymbol{b}} = 2\hat{\boldsymbol{\imath}} - 3\hat{\boldsymbol{\jmath}} - \widehat{\boldsymbol{k}}$ is
	A) 0	B) $\frac{2\sqrt{14}}{7}$
	C) 4	D) None of these
	,	•
10.	If $ \vec{a} \times \vec{b} = 4$, $\vec{a} \cdot \vec{b} = 3$ and $ \vec{b} = 5$, then	\vec{a} is
	A) A zero vectorC) A unit vector	B) Vector with magnitude 2 unitsD) None of these
11.	In a linear programming problem, feasible r A) All possible solutions satisfying all the c B) Only optimal solution exist C) Only non-negative solutions exist D) None of these	<u> </u>
12.	$\int \frac{2^x - 3^x}{5^x} dx \text{ is}$	
	$A) \frac{2^x log 2 - 3^x log 3}{5^x log 5} + C$	B) $\left(\frac{2}{5}\right)^x \log\left(\frac{2}{5}\right) - \left(\frac{3}{5}\right)^x \log\left(\frac{3}{5}\right) + C$
	C) $\left(-\frac{1}{5}\right)^x \log\left(\frac{1}{5}\right) + C$	D) None of these
13.	$\int_{-3}^{3} x^7 \cos x dx \text{ is}$	
	A) 0	B) 1
	C) -1	D) None of these
14	General solution of the differential equation	xdx + ydy = 0 is a
± f.	A) Parabola	B) Circle
	C) Hyperbola	D) Ellipse

- 15. Domain of $y = \sin^{-1}(2x 1)$ is
 - A) [-1,1]

B) [0,2]

C) [0,1]

- D) None of these
- 16. The corner points of the feasible region of an LPP are (0,4), (0.6,1.6) and (3,0).

The minimum value of the objective function z = 4x + 6y occurs at

A) (0.6,1.6) only

B) (3,0) only

C) (0.6,1.6) and (3,0) only

- D) at every point of the line segment joining points (3,0) and (0.6,1.6)
- 17. The relation described by $R = \{(a,b): a \le b, a,b \text{ are natural numbers}\}$ is
 - A) Equivalence relation

B) Not reflexive

C) Not symmetric

- D) Not transitive
- 18. Area of the region bounded by x-axis, $x^2 = 12y$ and the line x = 3 in the first quadrant is
 - A) 3 sq units

B) 9 sq units

C) 4.5 sq units

D) None of these

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true but (R) is false.
- (D) (A) is false but (R) is true.
- 19. Assertion(A): f(x) = [x] is not differentiable at integral points. Reason(R): If a function is not differentiable at a point, then it in not continuous thereat.
- 20. Assertion(A): $f(x) = x^4$, where x is any prime number is one-one function. Reason(R):A function is one – one if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ for all $x_1, x_2 \in domain$

Section B

This section contains 5 very short answer type (VSA) of 2 marks each

- 21. Simplify: $tan^{-1} \frac{1-sin\theta}{cos\theta}$
- 22. Find the rate of change in the area of a circle with respect to its radius when the radius is 10 cm.

- 23. Find the derivative of $\tan^{-1} x$ with respect to $\sin^{-1} x$, $x \in [-1, 1]$ Find $\frac{d^2y}{dx^2}$ if $x = a(1 + \cos\theta)$ and $y = a(\theta + \sin\theta)$
- 24. Let, α , β and γ be the angles made by a vector with the three co-ordinate axes. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$. Find the value of

If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the angle between the vectors \vec{a} and \vec{b} .

25. Find the unit vector which is perpendicular to the vectors $3\hat{i} - \hat{j}$ and $\hat{i} + 2\hat{j} - \hat{j}$ $5\hat{k}$.

SECTION C

This section contains 6 short answer type (SA) of 3 marks each

- 26. The volume of a cube is increasing at a constant rate. Prove that the increase in surface area varies inversely as the length of the edge of the cube.
- 27. Show that $y = \frac{4sin\theta}{2+cos\theta} \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
- 28. Find the value of p so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

OR.

Find the value of k if the points (k,-10,3),(1,-1,3) and (3,5,3) are collinear.

29. Evaluate the integral: $\int \frac{x^2}{(x^2+1)(x^2+5)} dx$

Evaluate the integral: $\int_0^2 (2-x)^m x dx$

- 30. Determine the maximum value of z = 11x+7y subject to the constraints $2x + y \le 6, x \le 2, x \ge 0, y \ge 0$
- 31. Two dice are thrown together and the total score is noted. The events E,F and G are 'a total score of 4', 'a total score of 9 or more' and 'a total score divisible by 5' respectively.

Calculate P(E), P(F) and P(G) and decide which pairs of events are independent.

The probability that A hits the target is $\frac{1}{3}$ and the probability that B hits the target

, is $\frac{2}{5}$. If both try to hit the target independently, find the probability that the target is hit.

Section D

This section contains 4long answer type (LA) of 5 marks each

- 32. Find the area of the region bounded by the curves $x^2=y,y=x+2$ and x-axis, using integration.
- 33. If $A = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix}$ find A^{-1} . Use it to solve the system of equations 2x 3y + 5z = 11; 3x + 2y 4z = -5; x + y 2z = -3

34. Show that the differential equation $x\frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y\sin\left(\frac{y}{x}\right) = 0$ is homogeneous. Find the particular solution of this differential equation, given that x=1 when $y=\frac{\pi}{2}$

OR.

Classify the differential equation $\frac{dy}{dx} + 2\tan x$. $y = \sin x$ on the basis of its order degree. Find the particular solution of this differential equation given that y=0 when $x=\frac{\pi}{3}$

35. Find the distance between the line $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ and another line parallel to it and passing through the point (4,0, -5).

OR

Find the co-ordinates of the foot of perpendicular and the length of the perpendicular drawn from the point P(5,4,2) to the line $\vec{r} = -\hat{\imath} + 3\hat{\jmath} + \hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} - \hat{k})$, where λ is a scalar. Also, find the image of P in this line.

Section E

This section contains 3 case study based questions of 4 marks each

36. Case study -1

A potter made a mud vessel where the shape of the pot is based on f(x) = |x - 3| + |x - 2|, where f(x) represents the height of the pot.

- (A) When x > 4, what will be the height of the pot in terms of x? 1 mark
- (B) Will the slope of the pot vary with the value of x?

1 mark

(C) What is
$$\frac{dy}{dx}$$
 at $x = 3$?

2 marks

OR,

(C) Will the potter be able to make a pot using the function f(x) = [x]? 2 mark 37. Case study – 2

Students of Grade 12, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the sapling along the line y = x - 4. Let, L be the set of all lines which are parallel on the ground and R be a relation on L.

Based on the given information, answer the following questions:

- (A) Let, f: $R \to R$ be defined by f(x) = x 4, then find the range of f(x). 1 mark
- (B) Is f one-one? 1 mark
- (C) Let, $R=\{(L_1,L_2): L_1 \parallel L_2 \text{ where } L_1,L_2 \in L\}$, then, show that R is an equivalence relation.

ЭR

(C) Write the equivalence class of the line 3x - 4y = 5.

2 marks

38. Case study - 3

Jyoti CNC is the largest CNC (Computer Numerical Control) machine manufacturing company of India. Their unit in Bhubaneswar, Odisha has three machine operators A,B and C. The operators supervise the machines while they execute the task and make any necessary adjustments to produce a better result. Their main focus is to minimize defects as it increased the cost of operations.

The first operator a produces 1% defective items, whereas the other two operators B and C produces 5% and 7% defective items respectively.

Machine	% of the time on the			
operators	job			

A	50%
В	30%
С	20%

Based on the given information, answer the following questions:

- (A) What is the conditional probability that the defective item is produced by the operator A?

 2 marks
- (B) The factory in charge wants to do a quality check. During inspection he picks on item from the stockpile at random. If the chosen item is defective, then what is the probability that it is not produced by the operator C?

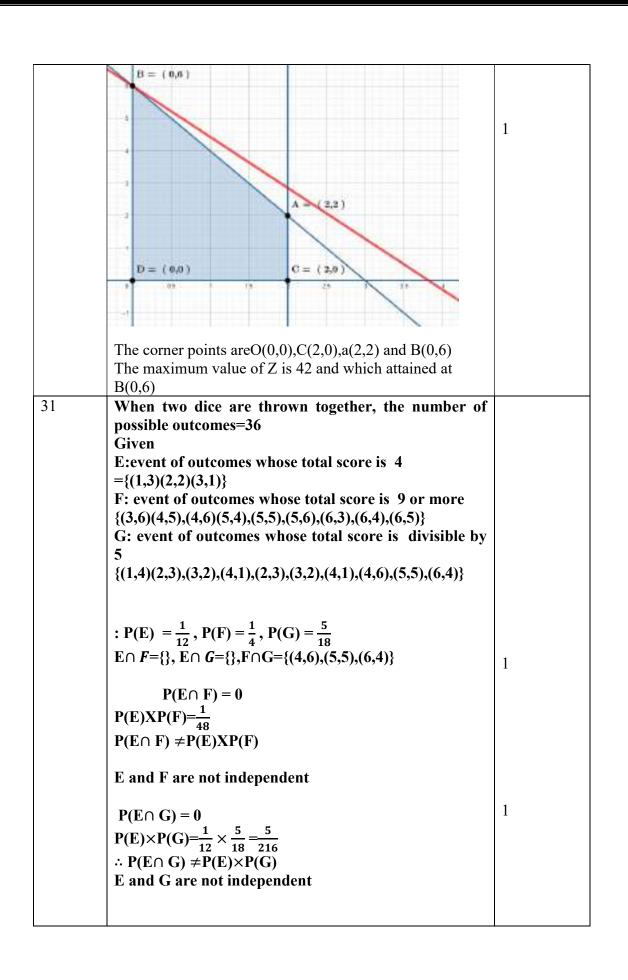
 2 marks

NVS RO SHILLONG WHOLE SYLLABUS PRACTICE PAPER SET IV (2024-2025) MARKING SCHEME CLASS XII

MARKING SCHEME CLASS XII MATHEMATICS(CODE-041)

SECTION:A

(Solution of MCQs of 1Mark each)


	(Solution of MCQs of IMark each)	
QUESTI	ANSWER	MARKS
ON		
NUMBE		
R		
1	A	
2 3 4 5 6	С	
3	В	
4	C	
5	В	
	A	
7	В	
8	В	
9	В	
10	С	
11	A	
12	В	
13	A	
14	В	
15	С	
16	D	
17	С	
18	A	
19	С	
20	A	
21	$\tan^{-1} \frac{1 - \sin \theta}{\cos \theta} = \tan^{-1} \left(\frac{1 - \cos \left(\frac{\pi}{2} - \theta \right)}{\sin \left(\frac{\pi}{2} - \theta \right)} \right)$	1
	$= \tan^{-1} \left(\frac{2\sin^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)}{2\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)} \right)$ $= \tan^{-1} \left(\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \right) = \frac{\pi}{4} - \frac{\theta}{2}$	1
22	Answer: let, r be the radius of the circle	1
	Then, A = area of the circle = πr^2	
	inch, A area or the circle – nr	
	I	

	Then, $\frac{dA}{dr}=2\pi r$	1
	At, $r = 10$ cm, $\frac{dA}{dr} = 20\pi \ cm^2/cm$	
23	$: \frac{d(\tan^{-1}x)}{d(\sin^{-1}x)} = \frac{\frac{d}{dx}(\tan^{-1}x)}{\frac{d}{dx}(\sin^{-1}x)}$	1
	$= \frac{\frac{1}{1+x^2}}{\frac{1}{\sqrt{1-x^2}}} = \frac{\sqrt{1-x^2}}{1+x^2}$	1
23(OR)	$\frac{dy}{dx} = \frac{1 + \cos\theta}{-\sin\theta} = \frac{2\cos^2\frac{\theta}{2}}{-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = -\cot\frac{\theta}{2}$	1
	So, $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\cot\frac{\theta}{2}\right) = \frac{1}{2}\csc^2\frac{\theta}{2}\frac{d\theta}{dx} =$	1
	$\frac{\frac{1}{2}cosec^{2}\frac{\theta}{2}}{-sin\theta} = -\frac{1}{4}cosec^{3}\frac{\theta}{2}sec\frac{\theta}{2}$	
24	let the vector be $\vec{r} = a\hat{\imath} + b\hat{\jmath} + c\hat{\jmath}$ $A/Q, \cos\alpha = \frac{\vec{r} \cdot \hat{\imath}}{ \vec{r} } = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$ Similarly, $\cos\beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$ and $\cos\gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$	1
	So, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.	1
24(OR)	we have, $\vec{a} + \vec{b} + \vec{c} = \vec{0} \Rightarrow \vec{a} + \vec{b} = -\vec{c} \Rightarrow \vec{a} + \vec{b} ^2 = -\vec{c} ^2$	1
	$\Rightarrow \vec{a} ^2 + \vec{b} ^2 + 2\vec{a} \cdot \vec{b} = \vec{c} ^2$	1
	$\Rightarrow 1 + 1 + 2 \vec{a} \vec{b} \cos\theta = 1 \Rightarrow \cos\theta = -\frac{1}{2}$ $\theta = \frac{2\pi}{3}$	
25	: let, $\overrightarrow{a}=3\hat{\imath}-\hat{\jmath}$ and $\overrightarrow{b}=\hat{\imath}+2\hat{\jmath}-5\widehat{k}$. Here	1
	$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 0 \\ 1 & 2 & -5 \end{vmatrix}$	

	$=5\hat{i}+15\hat{j}+7\hat{k}$	
	So, unit vector along the perpendicular to the vectors = $\frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} }$	1
	$=\pm\frac{5\hat{\imath}+15\hat{\jmath}+7\widehat{k}}{\sqrt{299}}$	
26	: let, I be the length of the edge of the cube and V be the volume $So, V = I^3$	1
	A/Q, $\frac{dV}{dt} = k \Rightarrow \frac{d}{dt}(l^3) = k$, k being a constant So, $\frac{dl}{dt} = \frac{k}{3l^2}$	1
	Then, S = surface are of the cube = $6l^2$ So, $\frac{dS}{dt} = 12l\frac{dl}{dt} = 12l\frac{k}{3l^2} = \frac{4k}{l} \Rightarrow \frac{dS}{dt} = \frac{constant}{l}$ Thus, change of S is inversely proportional to l. Hence proved	1
27	Here, $y = \frac{4\sin\theta}{2 + \cos\theta} - \theta$ So, $\frac{dy}{d\theta} = \frac{8\cos\theta + 4\cos^2\theta + 4\sin^2\theta - (4 + 4\cos\theta + \cos^2\theta)}{(2 + \cos\theta)^2}$ $= \frac{\cos\theta(4 - \cos\theta)}{(2 + \cos\theta)^2}$	1
	For θ in $\left[0,\frac{\pi}{2}\right]$, $0 \le cos\theta \le 1$ $4 - cos\theta > 0$ and $(2 + cos\theta)^2 > 0$	1
	Hence, $\frac{dy}{d\theta} = \frac{(non-negative\ quantity)(positive\ quantity)}{positive\ quantity} = non - negative\ quantity$ $negative\ quantity$ $Thus, \frac{dy}{d\theta} \ge 0 \Rightarrow y \text{ is increasing in } \left[0, \frac{\pi}{2}\right]$	1

Given lines are $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2} \Rightarrow \frac{x-1}{-3} = \frac{y-2}{\frac{2p}{7}} = \frac{y-2}{2p}$	1
$\frac{z-3}{2}$ (i)	
$\frac{7-7x}{3n} = \frac{y-5}{1} = \frac{6-z}{5} \Rightarrow \frac{x-1}{3p} = \frac{y-5}{1} = \frac{z-6}{-5} \qquad(ii)$	
7	
$a_1 = -3$, $b_1 = \frac{2p}{7}$, $c_1 = 2$	
$a_2 = \frac{-3p}{7}$, $b_2 = 1$, $c_2 = -5$	
	1
Two lines (i) and (ii) are at right angle if $a_1a_2 + b_1b + cc_2 = 0$	
$=(-3)\left(-\frac{3p}{7}\right)+\left(\frac{2p}{7}\right)(1)+(2)(-5)=0$	1
$\Rightarrow 9p + 2p = 70 \Rightarrow p = \frac{70}{11}$	
let, the given points be A(k,-10,3),B(1,-1,3) and C(3,5,3) respectively. Since, A,B and C are collinear.	1
The d.rs of the lines AB and BC are in proportion	1
The d.rs of the line AB are 1-k,9 and 0 The d.rs of the line BC are 2 ,6 and 0	
	1
According to the question $\Rightarrow \frac{1-k}{2} = \frac{9}{6} = \frac{0}{0}$ $\Rightarrow k = -2$	
	$\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5} \Rightarrow \frac{x-1}{\frac{3p}{7}} = \frac{y-5}{1} = \frac{z-6}{-5} \qquad(ii)$ $T \Box e d.\text{rs of the lines (i) and (ii) are}$ $a_1=-3, b_1 = \frac{2p}{7}, c_1=2$ $a_2 = \frac{-3p}{7}, b_2=1, c_2=-5$ $\text{Two lines (i) and (ii) are at right angle if}$ $a_1a_2 + b_1b + cc_2 = 0$ $=(-3)\left(-\frac{3p}{7}\right) + \left(\frac{2p}{7}\right)(1) + (2)(-5) = 0$ $\Rightarrow 9p + 2p = 70 \Rightarrow p = \frac{70}{11}$ $\text{let, the given points be } A(k,-10,3),B(1,-1,3) \text{ and } C(3,5,3) \text{ respectively.}$ $\text{Since, } A,B \text{ and } C \text{ are collinear,}$ $\text{The d.rs of the lines } AB \text{ and } BC \text{ are in proportion}$ $\text{The d.rs of the line } AB \text{ are } 1-k,9 \text{ and } 0$ $\text{The d.rs of the line } BC \text{ are } 2,6 \text{ and } 0$ $\text{According to the question}$ $\Rightarrow \frac{1-k}{2} = \frac{9}{6} = \frac{0}{0}$

29	$\int \frac{x^2}{(x^2+1)(x^2+5)} dx$ $= \frac{1}{4} \int \frac{5(x^2+1) - (x^2+5)}{(x^2+1)(x^2+5)} dx$ $= \frac{1}{4} \int \left(\frac{5}{x^2+5} - \frac{1}{x^2+1}\right) dx$ $= \frac{1}{4} \left(\sqrt{5} \tan^{-1} \frac{x}{\sqrt{5}} - \tan^{-1} x\right) + c$	1 1 1
29(OR)	$: I = \int_0^2 (2-x)^m x dx$ $= \int_0^2 x^m (2-x) dx \int_a^b f(x) dx = \int_a^b f(a+b-x) dx$	1
	$= \frac{2x^{m+1}}{m+1} - \frac{x^{m+2}}{m+2} \Big _{0}^{2}$	1
	$= \frac{2^{m+2}}{m+1} - \frac{2^{m+2}}{m+2} - 0 + 0$ $= \frac{2^{m+2}}{(m+1)(m+2)}$	1
30		For graph 2

	$P(F \cap G) = \frac{1}{12}$ $P(F) \times P(G) = \frac{1}{4} \times \frac{5}{18} = \frac{5}{72}$ $\therefore P(F \cap G) \neq P(F) \times P(G)$	1
	F and G are not independent	
	No pairs are independent	
31(or)	Probability that A hits the target, $P(A) = \frac{1}{3}$ Probability that B hits the target, $P(B) = \frac{2}{5}$	$\frac{1}{2}$
	Probability that A does not hit the target, $P(\overline{A}) = 1 - \frac{1}{3}$ = $\frac{2}{3}$	1
	Probability that B does not hit the target, $P(\overline{B}) = 1 - \frac{2}{5}$ $= \frac{3}{5}$	$\frac{1}{2}$
		1
	Probability that the target is hit=At least one of them hit the target = 1 - $P(\overline{A}) P(\overline{B})$	1
	$=1-\frac{2}{3} \times \frac{3}{5}$ $=\frac{3}{5}$	
32	Given curves x ² =y(i) y=x+2(ii) and x-axis	Figure 1
	The points of intersection of the curves (i) and (ii) is given by $x^2=x+2 \Rightarrow x^2-x-2=0 \Rightarrow x=-1,2$	1
	Area of the shaded region= $\int_{-2}^{-1} (x+2) dx + \int_{-1}^{0} x^2 dx$	1
	1 ₁ 2 1 ⁻¹ _{[x³1} 0	1
	$= \left \frac{x^2}{2} + 2 \right _{-2}^{-1} + \left[\frac{x^3}{3} \right]_{-1}^{0}$	1

	_	
	$=\frac{5}{6}$ square units	
33	$\begin{vmatrix} A = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix} \implies A = -1$ $\therefore A^{-1} \text{ exist}$	1
	Calculation of co-factor of A $A_{11}=0$ $A_{12}=2$ $A_{13}=1$ $A_{21}=-1$ $A_{22}=-9$ $A_{23}=-5$ $A_{31}=2$ $A_{32}=23$ $A_{33}=13$	$1\frac{1}{2}$
	$AdjA = \begin{vmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{vmatrix}$ $A^{-1} = \frac{1}{ A } adjA = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$ The given system of equations can be written in matrix form as $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $\Rightarrow AX = B$	$\frac{1}{2}$ $\frac{1}{2}$
	$\Rightarrow X = A^{-1}B$ $\Rightarrow X = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\therefore x = 1, y = 2, z = 3$	$1\frac{1}{2}$

34	Given differential equation is $x \frac{dy}{dx} \sin(\frac{y}{x}) + x$	
	$y\sin\left(\frac{y}{x}\right)=0$ $dy \qquad y \qquad (y)$	
	$\Rightarrow \frac{dy}{dx} = \frac{y}{x} - \csc(\frac{y}{x})(i)$	1
		1
	Hence the given differential equation is homogeneous.	
	$\begin{vmatrix} \text{Let y=vx} \\ \Rightarrow \frac{dy}{dx} = \text{v+x} \frac{dv}{dx} \end{vmatrix}$	1
	dx dx	_
	The equation (i) will reduces to	
	$v + x \frac{dv}{dx} = \frac{vx}{x} - \csc\left(\frac{vx}{x}\right) = v - \csc v$	1
	$\Rightarrow x \frac{dv}{dx} = -\cos c c v$ $\Rightarrow -\sin v dv = \frac{dx}{x}$	1
	x x	
	Integrating $\int_{-\infty}^{\infty} dx$	
	$-\int \sin v dv = \int \frac{dx}{x}$ $\Rightarrow \cos v = \log x + C$	1
	$\Rightarrow \cos \frac{y}{x} = \log x + C(II)$	
	Putting	
	$y=\frac{\pi}{2}, x=1$ in (ii), we get	
	$\cos\left(\frac{\pi}{2}\right) = \log 1 + C$ $\Rightarrow C = 0$	1
	Hence the particular solution is	
	$\cos\frac{y}{x} = \log x$	
34(OR)	$\frac{dy}{dx}$ + 2tanx.y = sinx is a linear equation of degree 1.	1
	ax	
	The given differential equation is $\frac{dy}{dx}$ + 2tanx.y	
	$\frac{1}{x}$ $\frac{dx}{dx}$	<u> </u>

	$= \sin x \dots (i)$ $I.F = e^{\int p dx}$	1
	$= e^{\int 2tanx dx}$ $= \sec^2 x$	
	Multiplying both sides of equation (i) by I.F we get $y.(I.F) = \int sinx. sec^2x dx$ $y.sec^2x = secx + C(II)$	1
		1
	When y=0, $x = \frac{\pi}{3}$ (ii) \Rightarrow C=-2	
	Putting the value of C in (ii),we get y.sec²x = secx -2 ⇒y=cosx-2cos²x Which the required particular solution.	1
35		1
33	Given line is $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1} \Rightarrow \frac{x-0}{2} = \frac{y-3}{2} = \frac{z-1}{1}$ (i)	
	A line parallel to (i) and passing through (4,0,-5) is $\frac{x-4}{2} = \frac{y-0}{2} = \frac{z+5}{1}$ (ii)	
	$\vec{a_1} = 3\hat{j} + \hat{k} , \vec{a_2} = 4\hat{i} - 5\hat{k} \text{ and } \vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$	1
	$\overrightarrow{a_2} - \overrightarrow{a_1} = (4\hat{\imath} - 5\hat{k}) - (3\hat{\jmath} + \hat{k}) = 4\hat{\imath} - 3\hat{\jmath} - 6\hat{k}$	
	$(\overrightarrow{a_2} - \overrightarrow{a_1}) \times \overrightarrow{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & -3 & -6 \\ 2 & 2 & 1 \end{vmatrix} = 9\hat{\imath} - 16\hat{\jmath} + 14\hat{k}$	1
	$ \vec{b} = \sqrt{2^2 + 2^2 + 1^2} = 3$	

	So, required distance between the parallel lines (i) and (ii) is given by $\frac{\left (\overrightarrow{a_2} - \overrightarrow{a_1}) \times \overrightarrow{b}\right }{ \overrightarrow{b} }$	
	$= \frac{ 9\hat{i} - 16\hat{j} + 14\hat{k} }{3}$ $= \frac{\sqrt{81 + 256 + 196}}{3}$ $= \frac{\sqrt{533}}{3} \text{units}$	
35(OR)	Given line is $\vec{r} = -\hat{\imath} + 3\hat{\jmath} + \hat{k} + \lambda \left(2\hat{\imath} + 3\hat{\jmath} - \hat{k}\right)$ It can be written in Cartesian form as $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$ (i) Let $Q(\alpha, \beta, \gamma)$ be the foot of perpendicular drawn from $P(5,4,2)$ to the line (i) and $P'(x_1, y_1, z_1)$ be the image of $P(5,4,2)$ to the line (i) $P(5,4,2)$ is on line (i) $P(5,4,2)$ is on line (i) $P(5,4,2)$ is on line (i) $P(5,4,2)$ is $P(5,4,2)$ is $P(5,4,2)$ in $P(5,4,2)$ is $P(5,4,2)$ in $P(5,4,2)$ is $P(5,4,2)$ in $P(5,4,2)$ is $P(5,4,2)$ in $P(5,4,2)$ in $P(5,4,2)$ in $P(5,4,2)$ in $P(5,4,2)$ is $P(5,4,2)$ in $P(5,4,$	
	Now, $\overrightarrow{PQ} = (\alpha - 5)\hat{\imath} + (\beta - 4)\hat{J} + (\gamma - 2)\hat{k}$ Obviously $\overrightarrow{PQ} \perp \overrightarrow{b}$ $\Rightarrow \overrightarrow{PQ} \cdot \overrightarrow{b} = 0$ $\Rightarrow (\alpha - 5)2 + (\beta - 4)3 + (\gamma - 2)(-1) = 0$	1
	$\Rightarrow 2\alpha + 3\beta - \gamma - 20 = 0$ $\Rightarrow 2(2\lambda - 1) + 3(3\lambda + 3) - (-\lambda + 1) - 20 = 0$ $\Rightarrow \lambda = 1$ Using the accordinates of the fact of new and index Ω and	1
	Hence the co-ordinates of the foot of perpendicular Q are (1,6,0)	

	: Length of perpendicular =	
	$\therefore \qquad \text{Length} \qquad \text{of} \qquad \text{perpendicular} \qquad = \\ \sqrt{(5-1)^2 + (4-6)^2 + (2-0)^2}$	
	$=2\sqrt{6}$ units	
		1
	Al G: O: d · l · cpp/	_
	Also ,Since Q is the mid point of PP'	
	$\therefore 1 = \frac{x_1 + 5}{2} \Rightarrow x_1 = -3$	
	$6 = \frac{y_1 + 4}{2} \Rightarrow y_1 = 8$	
	$0 = \frac{z_1 + 2}{2} \Rightarrow z_1 = -2$	
	Therefore required image is (-3,8,-2)	
	(•) • , •)	
36	A potter made a mud vessel where the shape of the pot is	1
	based on $f(x) = x - 3 + x - 2 $, where $f(x)$ represents the	
	height of the pot.	
	(D) When $x > 4$, what will be the height of the pot	
	in terms of x? Answer: when $x > 4$, then $x - 3 > 0$ and $x - 2 > 0$ so, $f(x) =$	
	Answer: when $x > 4$, then $x = 3 > 0$ and $x = 2 > 0$ so, $1(x) = 1$ 1 + 3 + 2 = 1	
	(E) Will the slope of the pot vary with the value of x?	
		1
	Answer:	1
	we can redefine $f(x)$ as $-2x + 5$, $x \le 2$	
	f(x) = 1, $x = 2$	
	$2x-5, x\geq 3$	
	We can see that, for slope of the pot is -2 when	
	$x \leq 2$	1.1.2
	0 when $2 < x < 3$	1+1=2
	$2 \text{ when } x \ge 3$	
	So, slopes vary for value of x	
	(F) What is $\frac{dy}{dx}$ at $x = 3$?	
	(1) What is $\frac{1}{dx}$ at $x = 3$:	
	Answare	
	Answer: $f(3+h)-f(3)$ 1. 1-1	
	LHD = $\lim_{h\to 0^-} \frac{f(3+h)-f(3)}{h} = \lim_{h\to 0^-} \frac{1-1}{h} = 0$	
	And,	

	RHD = $\lim_{h\to 0^+} \frac{f(3+h)-f(3)}{h} = \lim_{h\to 0^+} \frac{2h}{h} = 2$ So, derivative does not exist at $x = 3$ OR,	2
	(C) Will the potter be able to make a pot using the function f(x) = [x]? Answer: As the function f(x) = [x] is discontinuous at every integral points, so he can only construct pots of height always less than 1 units.	
37	(A)Let, f: R \rightarrow R be defined by $f(x) = x - 4$, then find the range of $f(x)$. Answer: for $x \in R$, $-\infty < x < \infty \Rightarrow -\infty < x - 4 < \infty$ So, range of $f(x) = R$	1
	(B)Is f one-one? Answer: let, x_1,x_2 be two arbitrary entries in R such that $f(x_1) = f(x_2)$ $\Rightarrow x_1 - 4 = x_2 - 4$ $\Rightarrow x_1 = x_2$ Hence, f is one – one	1
	(C)Let, R={(L ₁ ,L ₂): L ₁ \parallel L ₂ where L ₁ ,L ₂ \in L}, then, show that R is an equivalence relation. Answer: R is symmetric as for any L ₁ \in L, L ₁ \parallel L ₁ So, (L ₁ ,L ₁) \in R for any L ₁ \in L Again, (L ₁ ,L ₂) \in R \Rightarrow L ₁ \parallel L ₂ \Rightarrow L ₂ \parallel L ₁ \Rightarrow (L ₂ ,L ₁) \in R So, R is symmetric	2
	Moreover, $ (L_1,L_2) \in R, \ (L_2,L_3) \in R \Rightarrow L_1 \parallel L_2 \text{and} L_2 \parallel L_3 \Rightarrow L_1 \parallel L_3 \Rightarrow (L_1,L_3) \in R $ So, R is transitive And, hence R is equivalence relation	2
	OR, (C) Write the equivalence class of the line $3x - 4y = 5$.	

	Answer: $[3x - 4y = 5] = \{3x - 4y = k : k \in R\}$	
38	(C) What is the conditional probability that the defective item is produced by the operator A?	
	Answer: Let, D be the event that product is defective and E ₁ be the event that it produced by operator A So, $P(E_1 D) = \frac{P(E_1)P(D E_1)}{P(A)}$	1
	$=\frac{\frac{50}{100} \times \frac{1}{100}}{\frac{50}{100} \times \frac{1}{100} + \frac{30}{100} \times \frac{5}{100} + \frac{20}{100} \times \frac{7}{100}} = \frac{5}{34}$	1
	(B)The factory in charge wants to do a quality check. During inspection he picks on item from the stockpile at random. If the chosen item is defective, then what is the probability that it is not produced by the operator C? Answer: P(defective items not produce by C) $= 1 - P(\text{defective item produced by C})$ $= 1 - P(E_3 D) = 1 - \frac{P(E_3)P(D E_3)}{P(A)}$	1
	$=1-\frac{\frac{\frac{20}{100}\times\frac{7}{100}}{\frac{50}{100}\times\frac{1}{100}+\frac{30}{100}\times\frac{5}{100}+\frac{20}{100}\times\frac{7}{100}}}{\frac{20}{34}=\frac{10}{17}}=1-\frac{14}{34}$	1

NVS RO-SHILLONG WHOLE SYLLABUS PRACTICE QUESTION PAPER SET-V (2024-25)

CLASS: XII

SUBJECT: MATHEMATICS (041)

TIME: 3 HRS MAX MARKS:80

BLUE PRINT

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. **Section B** has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. **Section D** has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Sl. No.	Typology of question	Total marks	Weightage
1	Remembering	44	55
	Understanding		
2	Application	20	25
3	Analysing	16	20
	Evaluating		
	Creating		
4	Total	80	100

Sl. No.	Type of	No. of	Total mark	Weightage
	Question	Questions		
1	MCQ	20	20	25
2	VSA	05	10	12.5
3	SA	06	18	22.5
4	LA	04	20	25
5	Case Base	3	12	15
Total		38	80	100

Unit wise Weightage

Sl. No.	<u>Unit</u>	<u>Mark</u>
<u>1</u>	Relation Function	<u>8</u>
2	Algebra	<u>10</u>
<u>3</u>	Calculus	<u>35</u>
4	Vector & Geometry	<u>14</u>
<u>5</u>	<u>LPP</u>	<u>5</u>
<u>6</u>	<u>Probability</u>	<u>8</u>
		<u>80</u>

Navodaya Vidyalaya Samiti, RO Shillong WHOLE SYLLABUS PRACTICE PAPER SET-V (2024-25)

Class-XII

Subject: Mathematics (041)

Time:3 Hours Maximum Marks:80 General Instructions:

- i. This Question paper contains 38 questions. All questions are compulsory.
- ii. This Question paper is divided into five Sections A, B, C, D and E.
- iii. In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19

and 20 are Assertion-Reason based questions of 1 mark each.

- iv. In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- v. In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- vi. In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- vii. In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- viii. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.
- ix. Use of calculator is not allowed.

SECTION A

(This section comprises of Multiple Choice Question of 1 mark each)

Q1. If for a square matrix A, A. $(adjA) = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, then the value of |A| + |adjA| is

a. 20 b. 30 c. 45 d. None of these.

Q2. Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$ respectively. Then the restriction on n, k and p so that PY + WY will be defined are:

a. $k=3,\,p=n$ b. k is arbitrary, p=2 c. p is arbitrary, k=3 d. $k=2,\,p=3$

Q3. The interval in which the function f defined by $f(x) = e^x$ is strictly increasing, is

a. $[1,\infty)$ b. $(-\infty,0)$ c. $(-\infty,\infty)$ d. $(0,\infty)$

a. 5	b. 5 ²	c. 5 ⁴	d
Q5. The value of	n such that the differen	ntial equation $x^n \frac{dy}{dx} = y$	(logy – logx
	tive real number is hom		
a. 0	b. 1	c. 2	d.
Q6. If the points	$(x_1,y_1), (x_2,y_2)$ and $($	$(x_1 + x_2, y_1 + y_2)$ are	collinear, the
is equal to			
a. $x_2 y_1$	b. $x_1 y_1$	c. $x_2 y_2$	d. None o
<i>(</i> 0	2		
Q7. If $A = \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 2 & c \\ a & -b \\ 7 & 0 \end{pmatrix}$ is a skew syr	mmetric matrix, then va	lue of a+b+c i
a. 0	b. 2	c. 5 d	. None of thes
	o events A and B, if P(A	$(\bar{A}) = \frac{1}{4}, P(\bar{B}) = \frac{2}{4} \& P(\bar{B})$	$(A \cap B) = \frac{1}{2}$, t
$P(\frac{\bar{A}}{\bar{B}})$ is	, (2 3	4
$\Gamma(\frac{-}{B})$ is			
a. $\frac{3}{6}$	b. $\frac{8}{9}$	c. $\frac{5}{9}$	d. $\frac{1}{4}$
Q9. For what val	ue of 'a' the vectors 2i-3	3j+4k and ai+6j-8k are	collinear
a. 5	b. 4	c. 7	d. None
	$ \overrightarrow{b} = 4$ and $ \overrightarrow{a} + \overrightarrow{b} = 5$,		
a. 3	b. 4	c. 5	d. 8
a. 3	υ. τ	c. 3	u . 0
Q11. Of all the p	oints of the feasible regi	on, for maximum or m	inimum of obj
function, the point lie	es		
a. Inside the	e feasible region	b. At	the boundary l
the feasible	le region.		•
c. Vertex po	oint of the boundary of the	ne feasible region d. N	None of these
Q12. $\int \frac{dx}{x\cos^2(1+la)}$	is		
$\int x\cos^2(1+la)$	(gx)		
	$ gx + c$ b. $1 + \log x$	+ c c. Sec(1+logx	(c) + c
d. None of the π			
Q13. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Sin^5 x$	dx is		
2			
a. 0	b. 1	c. 2	d. None of t

equation

$$\frac{4\left(\frac{d^2y}{dx^2}\right)^3}{\frac{d^3y}{dx^3}} + \frac{d^3y}{dx^3} = x^2 - 1$$

a. -1 b. 4 c. 5 d. 6 Q15. $Tan^{-1}\{\sin(-\frac{\pi}{2})\}$ is

a. π b. $\frac{\pi}{2}$

 $c.-\frac{\pi}{2} \qquad d.-\frac{\pi}{4}$

Q16. $\int_{0.5}^{1.5} [x] dx$ is

a. 0.5

b. 1

c. 2.5

d. None of these

Q17. The function $f: R \to Z$ defined by f(x) = [x], where [.] denotes the greatest integer function, is

- a. Continuous at x=2.5 but not differentiable at x=2.5
- b. Not Continuous at x = 2.5 but differentiable at x = 2.5
- c. Not Continuous at x = 2.5 and not differentiable at x=2.5
- d. Continuous as well as differentiable at x = 2.5

Q18. A student observes an open-air Honeybee nest on the branch of a tree, whose plane figure is parabolic shape given by $x^2 = y$. Then the area (in sq units) of the region bounded by parabola, $x^2 = y$ and the line, y=4 is

b. $\frac{32}{3}$ c. $\frac{128}{3}$ d. $\frac{56}{3}$

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.)

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true but (R) is false.
- (D) (A) is false but (R) is true.

Q19. Assertion (A): Given a relation, $R = \{(x,y) : x,y \in Z ; x^2 + y^2 \le 9\}$, the domain of R $= \{ -3, -2, -1, 0, 1, 2, 3 \}$

Reason (R): For domain of R, put y = 0, then $x^2 \le 9$.

Q20. Assertion (A): Consider the function defined as f(x) = |x| + |x - 1|, $x \in R$. Then f(x) is not differentiable at x=0 and x=1.

Reason (R):Suppose f be defined and continuous on (a,b) and $c \in (a,b)$, the f(x) is not differentiable at

$$\chi = c$$
 if $\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \neq \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h}$

SECTION B

(This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)

- Q21. Find the Principal value of $\tan^{-1}[2\sin(2\cos^{-1}\frac{\sqrt{3}}{2})]$.
- Q22. The total revenue in Rupees received from the sale of x units of a product is given by $R(x) = 5x^2 2x + 1$. Find the marginal revenue when x = 5.
- Q23. Find derivative of $\sin^{-1} x$ with respect to e^{x} .

Or

Find derivative of $(\sin x)^x$ with respect to x

Q24. If vectors $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{b} + \lambda \vec{c}$ is perpendicular to \vec{a} , then find the value of λ .

Oı

Find $|\vec{x}|$ if $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$, where \vec{a} is a unit vector

Q25. The two co-initial adjacent sides of a parallelogram are $2\hat{i}-4\hat{j}-5k^{\hat{}}$ and $2\hat{i}+2\hat{j}+3k^{\hat{}}$. Find its diagonals and use them to find the area of the parallelogram.

SECTION C

(This section comprises of 6 short answer (SA) type questions of 3 marks each.)

- Q26. A kite is flying at a height of 3 metres and 5 metres of string is out. If the kite is moving away horizontally at the rate of 200 cm/s, find the rate at which the string is being released.
- Q27. Find the intervals in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.
- Q28. Find the value of τ if the lines : $\frac{1-x}{3} = \frac{7y-14}{2\tau} = \frac{5z-10}{11}$ & $\frac{7-7x}{3\tau} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other.

Find the vector and the cartesian equation of the line that passes through (-1, 2, 7) and is perpendicular to the lines $\vec{r} = 2\hat{\imath} + \hat{\jmath} - 3k^{\hat{}} + \lambda(\hat{\imath} + 2\hat{\jmath} + 5k^{\hat{}})$ and

$$\vec{r} = 3\hat{i} + 3\hat{j} - 7k^{\hat{}} + \mu(3\hat{i} - 2\hat{j} + 5k^{\hat{}})$$

Q29. Evaluate: $\int \left\{ \frac{1}{\log x} - \frac{1}{(\log x)^2} \right\} dx$; (where x > 1).

Or

Evaluate: $\int_0^1 x(1-x)^n dx$, where $n \in N$

Q30. Consider the following Linear Programming Problem:

Minimise z = x+2y Subject to

$$2x + y \ge 3$$
, $x+2y \ge 6$, $x,y \ge 0$

Show graphically that the minimum of Z occurs at more than two points.

Q31. The probability that it rains today is 0.4. If it rains today, the probability that it will rain tomorrow is

0.8. If it does not rain today, the probability that it will rain tomorrow is 0.7. If

P1: denotes the probability that it does not rain today.

P2: denotes the probability that it will not rain tomorrow, if it rains today.

P3: denotes the probability that it will rain tomorrow, if it does not rain today.

P4: denotes the probability that it will not rain tomorrow, if it does not rain today.

- (i) Find the value of $P_1xP_4 P_2xP_3$. [2Marks].
- (ii) Calculate the probability of raining tomorrow. [1Mark]

Oı

A random variable X can take all non – negative integral values and the probability that X takes the value r is proportional to 5^{-r} . Find $P(X \le 3)$

SECTION D

(This section comprises of 4 long answer (LA) type questions of 5 marks each.)

- Q32. Find the area enclosed by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
- Q33. Use product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve the following equations:

$$x-2y+2z=1$$
, $2y-3z=1$ & $3x-2y+4z=2$

Q34. If
$$y^x = e^{y-x}$$
, then prove that $\frac{dy}{dx} = \frac{(1 + log x)^2}{log y}$

Q.35. Find the shortest distance between the lines l_1 and l_2 whose vector equations are $\vec{r} = (-\vec{t} - \vec{j} - \vec{k}) + \lambda(7\vec{t} - 6\vec{j} + \vec{k})$ and $\vec{r} = (3\vec{t} + 5\vec{j} + 7\vec{k}) + \mu(\vec{t} - 2\vec{j} + \vec{k})$ where λ and μ are parameters.

SECTION-E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two subparts of 2 marks each)

- Q.36. Ramesh, the owner of a sweet selling shop, purchased some rectangular card board sheets of dimension 25 by 40 cm to make container packets without top. Let x cm be the length of the side of the square to be cut out from each corner to give that sheet the shape of the container by folding up the flaps. Based on the above information, answer the following questions:
 - (i) Express the volume (V) of each container as function of x only.

[1Mark]

- (ii) Find $\frac{dv}{dx}$ [1Mark]
- (iii) For what value of x, the volume of each container is maximum? [2Marks]

OR

Check whether V has a point of inflection at $x = \frac{65}{6}$.

[2mark]

Q37. An organization conducted bike race under 2 different categories-boys and girls. In all, there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let $B = \{1, 2, 3\}$. $G = \{g_1, g_2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race. Ravi decides to explore these sets for various types of relations and functions.

On the basis of the above information, answer the following questions:

(i) Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

[1Mark]

- (ii) Write the smallest equivalence relation on G. [1mark]
- (iii) Ravi defines a relation from B to B as $\mathbf{R}_1 = \{(\mathbf{b}_1, \mathbf{b}_2), (\mathbf{b}_2, \mathbf{b}_1)\}$. Write the minimum ordered pairs to be added in $\mathbf{R}\mathbf{1}$ so that it becomes (A) reflexive but not

symmetric, (B) reflexive and symmetric but not transitive

[2mark]

OR

- (iii). If the track of the final race (for the biker b_1) follows the curve $x^2 = 4y$; (where $0 \le x \le 20\sqrt{2}$ & $0 \le y \le 200$), then state whether the track represents a one-one and onto function or not. (Justify). [2Marks]
- Q.38. Arka bought two cages of birds: Cage-I contains 5 parrots and 1 owl and Cage –II contains 6 parrots. One day Arka forgot to lock both cages and two birds flew from Cage-I to Cage-II (simultaneously). Then two birds flew back from cage-II to cage-I(simultaneously). Assume that all the birds have equal chances of flying. On the basis of the above information, answer the following questions:
 - (i) When two birds flew from Cage-I to Cage-II and two birds flew back from Cage-II to Cage-I then find the probability that the owl is still in Cage-I.

[2Marks]

(ii) When two birds flew from Cage-I to Cage-II and two birds flew back from Cage-II to Cage-I, the owl is still seen in Cage-I, what is the probability that one parrot and the owl flew from Cage-I to Cage-II?

[2Marks]

NVS RO SHILLONG WHOLE SYLLABUS PRACTICE PAPER SET V (2024-2025)

MARKING SCHEME CLASS XII MATHEMATICS(CODE-041)

SECTION:A

(Solution of MCQs of 1 Mark each)

Q.No	ANS	HINTS/SOLUTION
1.	(B)	A =5, $ A + adjA =5+25=30$
2.	(A)	P v w v
		Order Order Order
		$p \times k$ $3 \times k$ $n \times 3$ $3 \times k$
		For PY to exist Order of WY
		For PY to exist Order of WY $k = 3 = n \times k$
		For PY + WY to exist order(PY) = order(WY)
		$\therefore p = n$
3.	(C)	
4.	(B)	25
5.	(B)	
6.	(A)	
7.	(B)	
/.	(B)	
8.	(C)	
9.	(D)	
10.	(C)	
11.	(C)	
12.	(C) (A)	
13.	(A) (A)	
14.	(A) (C)	m=3, n=2 & m+n+5
15.	(D)	$Tan^{-1}(-1) = -\frac{\pi}{4}$
16.	(A)	0.5
17.	(D)	
18.	(B)	
19.	(A)	
20.	(C)	
	/	Section –B

Section –B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

21	$\operatorname{Tan}^{-1}(2\operatorname{Sin}^{\frac{\pi}{3}})$	1
	$= \operatorname{Tan}^{-1}(\sqrt{3}) \qquad \qquad = \frac{\pi}{3}$	
	3	1
22.	The marginal revenue = $R^{\prime}(x=5)$	1
	= 48	1
23.	let y= Sin ⁻¹ x	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$
	$dy/dx = \frac{1}{\sqrt{1-x^2}}$ & $dz/dx = e^x$	Í
	$\& dz/dx = e^{x}$	$\frac{1}{2}$
	So dy/dz = $\frac{1}{e^x \sqrt{1-x^2}}$	$\frac{1}{2}$
	e\(\sqrt{1-x}-\)	1 1
		2
OD	(-:)X	
OR	y=(sinx) ^x take log on both sides	1
23.	logy=xlog sinx	$\frac{1}{2}$
	$dy/dx = (\sin x)^{x}(x \cot x + \log \sin x)$	1
		$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \end{array}$
		1
24.	We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$	1
	$(b^{2} + \lambda c^{2}) \cdot a^{2} = 0 \Rightarrow 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$	1 2
	5	1
	$\lambda = -\overline{8}$	$\frac{1}{2}$
OR	$ \vec{x} ^2 - 1 = 12$	2
24.	$\begin{aligned} \vec{x} ^{-1} &= 12 \\ \vec{x} &= \sqrt{13} \end{aligned}$	
∠ '1 .		1
		$\frac{1}{2}$
25.	$\overrightarrow{d_1} = \overrightarrow{a} + \overrightarrow{b} = 4\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$, $\overrightarrow{d_2} = \overrightarrow{b} - \overrightarrow{a} = 6\hat{\jmath} + 8\hat{k}$	1
23.	$a_1 - a + b = 4i - 2j - 2\kappa$, $a_2 = b - a = 6j + 8\kappa$	$\frac{1}{2}$
		1
		1
		$\frac{1}{2}$

	Area of the parallelogram = $\frac{1}{2} \left \overrightarrow{d_1} x \overrightarrow{d_2} \right = \frac{1}{2} \begin{vmatrix} i & j & k \\ 4 & -2 & -2 \\ 0 & 6 & 8 \end{vmatrix}$	
	$=\frac{1}{2} -4i-32j+24k $	
	Area of the parallelogram = $\frac{1}{2}\sqrt{1616}$ = $2\sqrt{101}$ sq unit	
	Section –C	
[This sec	tion comprises of solution short answer type questions (SA) of 3 marks	eachl
26.	tion comprises of solution short answer type questions (SA) of 5 marks	caciij
	y y	$\frac{1}{2}$
	3	
		1
	$x^2 + 3^2 = y^2$	1
	when x=5 then x=4 & $2x \frac{dx}{dt} = 2y \frac{dy}{dt}$	
	so, $\frac{dy}{dt} = 160 \text{cm/sec}$	
27.	$F'(x) = 0$ $X = \frac{\pi}{4} or \frac{5\pi}{4}$	1
	$f'(x) > 0$ on $x \in \left[0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right)$	1
	$f'^{(x)} < 0$ at $x \in (\frac{\pi}{4}, \frac{5\pi}{4})$	$\frac{1}{2}$
	strictly increasing on $\left[0,\frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4},2\pi\right)$	1
		$\overline{2}$
28	strictly decreasing on $(\frac{\pi}{4}, \frac{5\pi}{4})$	
28	Ans: $\tau = 7$ OR, Line perpendicular to the lines $\vec{r} = 2\hat{\imath} + \hat{\jmath} - 3\hat{k} + \lambda(\hat{\imath} + 2\hat{\jmath} + 5\hat{k})$ and $\vec{r} = 3\hat{\imath} + 3\hat{\jmath} - 7\hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} + 2\hat{\jmath} + 3\hat{k})$	
	$5\hat{k}$).	1
	has a vector parallel it is given by $\vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 5 \\ 3 & -2 & 5 \end{vmatrix} = = 20\hat{\imath}$ + $10\hat{\jmath} - 8\hat{k}$	1
	3 -2 5 ∴ equation of line in vector form is $\vec{r} = -\hat{\imath} + 2\hat{\jmath} + 7\hat{k} + a(10\hat{\imath} + 5\hat{\jmath} - 2\hat{\jmath})$	1

	$4\hat{k}$)		
	Eqn in Cartesian form is $\frac{x+1}{10} = \frac{y-1}{5}$	2 _ z-7	
	Equi in Cartesian form is $\frac{1}{10} = \frac{1}{5}$	$-\frac{1}{4}$	
29.	$I = \left(\left(\begin{array}{cc} 1 & 1 \\ \end{array} \right) dx$		1
_, .	$I = \int \left\{ \frac{1}{\log x} - \frac{1}{(\log x)^2} \right\} dx$		
	$= \int \frac{1}{\log x} dx - \int \left\{ \frac{1}{(\log x)^2} \right\} dx$		1
	Use By part in 1 st integration		
	$I = \frac{x}{logx} + C$		1
OR	$I = \frac{x}{\log x} + C$ Let $I = \int_0^1 x (1 - x)^n dx$		1
29	$= \int_0^1 (1-x) \{1-(1-x)^n dx ,$	(using prop)	1
	$= \int_0^1 x^n dx - \int_0^1 x^{n+1} dx$		1
	$=\frac{1}{(n+1)(n+2)}$		
30.	The feasible region determined b	y given constraints, is as shown.	1
	The corner points of the unbounded	ed feasible region are $A(6,0)$ and	1
	B(0,3).		
	The values of Z at these corner po	ints are as follows:	
	Comon noint	Value of the abit of the factor of	$\frac{1}{2}$
	Corner point	Value of the objective function	
	A(6,0)	Z = x + 2y	
	B(0,3)	6	1
			$\frac{1}{2}$
	We observe the region $x + 2y < 6$ have no points in common		
	with the unbounded feasible region. Hence the minimum value of z		
	= 6.		
	It can be seen that the value of Z a	t points A and B is same. If we	
	take any other point on the line	x + 2y = 6 such as $(2,2)$ on line,	1

	x + 2y = 6, then $Z = 6$.	
	Thus, the minimum value of Z occurs for more than 2 points, and is equal to 6.	
31	Since the event of raining today and not raining today are complementary events so if the probability that it rains today is 0.4 then the probability that it does not rain today is $1-0.4=0.6$, so, $P_1=0.6$	
	If it rains today, the probability that it will rain tomorrow is 0.8 then	
	the probability that it will not rain tomorrow is $1 - 0.8 = 0.2$.	
	If it does not rain today, the probability that it will rain tomorrow is	
	0.7 then the probability that it will not rain tomorrow is $1-0.7 = 0.3$	
	Today Tomorrow	
	0.8 Rain	
		1
	0.4 Rain P ₂ = 0.2 No	1
	Rain	
	$P_{s} = 0.6$ No $P_{s} = 0.7$	1
	Rain	$\frac{1}{2}$
	P ₄ = 0.3 No Rain	
		1_
	(i) $P_1 P_4$ - $P_2 P_3 = 0.6 \times 0.3$ -0.2 x 0.7 = 0.04. (ii) Let E_1 and E_2 be the events that it will rain today and it will not rain today respectively. $P(E_1) = 0.4 \& P(E_2) = 0.6$	2
	A be the event that it will rain tomorrow. $P\left(\frac{A}{E_1}\right) = 0.8 \& P\left(\frac{A}{E_2}\right)$	
	= 0.7 We have, $P(A) = P(E_1)P(E_1)P(E_2)P(E_3)P(E_4) = 0.4 \times 0.8 + 0.6 \times 0.7$ = 0.74.	
	The probability of rain tomorrow is 0.74.	
31 (OR)	Given $P(X=r)\alpha_5 \frac{1}{5^r}$	$\frac{1}{2}$
(OK)	$P(X = r) = k.\frac{1}{5^r}$, where k is a non-zero constant)	-

$P(r = 0) = k.\frac{1}{5^{0}}$ $P(r = 1) = k.\frac{1}{5^{1}}$ $P(r = 2) = k.\frac{1}{5^{2}}$ $P(r = 3) = k.\frac{1}{5^{3}}$	1 2
	$\frac{1}{2}$
We have, $P(X = 0) + P(X = 1) + P(X = 2) + \dots = 1$ $K = \frac{4}{5}$ So $P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$	_
So, $P(X<3) = P(X=0) + P(X=1) + P(X=2)$ = $\frac{124}{125}$	

Section -D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

32.	Equation is $\frac{x^2}{9} + \frac{y^2}{4} = 1$, so $y = \frac{2}{3}\sqrt{9 - x^2}$	1
	Area of Ellipse =4x area of shaded region= $4 \int_0^3 y dx$ = $\frac{8}{3} \int \sqrt{9 - x^2} dx$	1+1
	$=6\pi sq unit$	1
		1
33	Let $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{pmatrix}$ AC = I So, $A^{-1} = C$	1
	Using matrix method, X= A ⁻¹ B	2
	So, x= 0, y= 5 & z= 3	1
34.	Here, $y^x = e^{y-x}$	1
	Taking log on both sides	
	$X \log y = y - x$ $y = y \sin \frac{dx}{x}$	2
	$X = \frac{y}{1 + logy} \text{ Find } \frac{dx}{dy}$	1
	So, $\frac{dy}{dx}$ =	

		1
35	$\vec{r} = (-\hat{i} - \hat{j} - \hat{k}) + \lambda (7\hat{i} - 6\hat{j} + \hat{k}); \text{where } \lambda' \text{ is a scalar.}$ $\vec{l} = (7\hat{\lambda} - 1, -6\hat{\lambda} - 1, \hat{\lambda} - 1)$	1
	$\vec{r} = (3\hat{i} + 5\hat{j} + 7\hat{k}) + n(\hat{i} - 2\hat{j} + \hat{k}); where '\mu' is a scalar$	
	Given that equation of lines are	
	$\vec{r} = (-\hat{\imath} - \hat{\jmath} - \hat{k}) + \lambda(7\hat{\imath} - 6\hat{\jmath} + \hat{k})(i)$ and	
	$\vec{r} = (3\hat{\imath} + 5\hat{\jmath} + 7\hat{k}) + \mu(\hat{\imath} - 2\hat{\jmath} + \hat{k})(ii)$	2
	$PQ^{\rightarrow \rightarrow \rightarrow \rightarrow} = OQ^{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow} - {}^{\rightarrow}OP^{\rightarrow \rightarrow \rightarrow} = (\mu + 3 - 7\lambda + 1)\hat{\imath} + (-2\mu + 5 + 6\lambda + 1)\hat{\jmath} + (\mu + 7 - \lambda + 1)\hat{k}i. e., {}^{\rightarrow}PQ^{\rightarrow \rightarrow \rightarrow} = (\mu - 7\lambda + 4)\hat{\imath} + (-2\mu + 6\lambda + 6)\hat{\jmath} + (\mu - \lambda + 8)\hat{k};$	1
	$\&(\mu - 7\lambda + 4).\ 1 + (-2\mu + 6\lambda + 6).\ (-2) + (\mu - \lambda + 8).\ 1 = 0$	
	$20\mu - 86\lambda = 0 = > 10\mu - 43\lambda = 0 & 6\mu - 20\lambda = 0 \Rightarrow 3\mu - 10\lambda = 0$	
	On solving the above equations, we get $~\lambda=\mu$ =0	
	So, the position vector of the points P and Q are $-\hat{\imath} - \hat{\jmath} - \hat{k}$ and	
	$3\hat{\imath} + 5\hat{\jmath} + 7\hat{k}$ respectively.	
	$PQ = 4\hat{\imath} + 6\hat{\jmath} + 8\hat{k}$ and	1
	$ PQ = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116} = 2\sqrt{29}units.$	
	Section –E	

Section –E

[This section comprises solution of 3 case- study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

36.	(i) $V = (40 - 2x)(25 - 2x)xcm^3$	1
	(ii) $dV/dx = 4(3x - 50)(x - 5)$	1
		1/2
	(iii) (a) For extreme values, $dv/dx = 4(3x - 50)(x - 5) = 0$	
	50	1/2
	$\Rightarrow x = \frac{50}{3} \text{or } x = 5$	

		1/2
	A^2V	
	$\frac{d^2V}{dx^2} = 24x - 260$	
		1/2
	_	
	$\frac{d^2V}{dx^2} \text{ at } x = 5 \text{ is } -140 < 0$	
	$\frac{d^2 V}{dx^2}$ at $x = 5$ is $-140 < 0$	
		1/2
	\therefore V is maximum when $x = 5$	1/2
	$\therefore \qquad V \text{ is maximum } when x = 5$	
	(iii) OR	1/2
	(b) For extreme values, $dv/dx = 4(3x^2 - 65x + 250)$	
	2	
	$\frac{d^2V}{dx^2} = 4(6x - 65)$	1/2
	Dv/dx at x = $\frac{1}{2}$ 65/6 exists and $\frac{d^2v}{dx^2}$ at x = 65/6 is 0	1/2
	dx^2	
	$\frac{d^2v}{dx^2}$ at x=65/6 is negative & $\frac{d^2v}{dx^2}$ at x=65/6 is positive	
	$\frac{1}{dx^2}$ at x=65/6 is negative & $\frac{1}{dx^2}$ at x=65/6 is positive	
	65	
2.7	$\therefore x = \frac{1}{6} \text{ is a point of inflection.}$	1
37	i)Number of relations is equal to the number of subsets of the set B $xG = 2^{n(B \times G)}$	1
	$= 2^{6}$ (Wheren(A) denotes the number of the elements in	
	the finite set A)	1
		-
	ii) Smallest Equivalence relation on G is $\{(g_1, g_1), (g_2, g_2)\}$ iii) (a) (A) reflexive but not symmetric =	
	$\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)\}.$	
	So the minimum number of elements to be added are	
	$(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)$ {Note: it can be any one of the pair from, $(b_3, b_2), (b_1, b_3), (b_3, b_4)$	
	Note: It can be any one of the pair from, $(\mathbf{b3}, \mathbf{b2})$, $(\mathbf{b1}, \mathbf{b3})$, $(\mathbf{b3}, \mathbf{b2})$ in place of	
	(b_2, b_3) also $\}$	1
	(B) reflexive and symmetric but not transitive =	
	$\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2) \}.$	

	So the minimum number of elements to be added are $(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2)$ OR (iii) (b) One-one and onto function $ \begin{array}{l} 2 = 4y. \text{ let } y = f(x) = \frac{x^2}{4} \\ \text{Let } x_1, x_2 \in [0, 20\sqrt{2}] \text{ such that } f(x_1) = f(x_2) \\ \Rightarrow x_1^2 = x_2^2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 0 \Rightarrow x_1 = x_2 \end{array} $ as $ \begin{array}{l} x_1, x_2 \in [0, 20\sqrt{2}] \\ \therefore f \text{ is one-one} \end{array} $	1
	Now, $0 \le y \le 200$ hence the value of y is non-negative and $f(2\sqrt{y}) = y$ for any arbitrary $y \in [0, 200]$, the pre-image of y exists in $[0, 20\sqrt{2}]$ hence f is onto function.	1
		1
38.	Let E_1 be the event that one parrot and one owl flew from cage $-I$ E_2 be the event that two parrots flew from Cage-I A be the event that the owl is still in cage-I (i) Total ways for A to happen From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came back.	$\frac{1}{2}$
	$ \begin{array}{l} = \\ (5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_1} \times 1_{C_1})(7_{C_2}) + (5_{C_2})(8_{C_2}) \\ \text{Probability that the owl is still in cage -I} = \\ = \frac{35 + 280}{35 + 105 + 280} = \frac{315}{420} = \frac{3}{4} \end{array} $	$\frac{1}{2}$
	(ii) The probability that one parrot and the owl flew from Cage-I to Cage-II given that the owl is $\binom{E^1/A}{P}$ $\binom{E_1/A}{P} = \frac{P(E_1 \cap A)}{P(-D_1)}$ still in cage-I is P	$\frac{1}{2}$ $\frac{1}{2}$
		1

(by Baye's Theorem) E1A +P(E2A)	
E1A + P(E2A)	
35	
$\frac{420}{315}$ $\frac{1}{}$	
$=\frac{313}{420}=\frac{1}{9}$	