Time: 90 min Maximum marks:40

INSTRUCTIONS TO THE STUDENTS

- 1. Read each question carefully.
- 2. Mark of each question is mention in front of question .
- 3. Attempt one question in internal choice based question .
- 4. Use of calculators is not allowed.

5. No negative marking .			
	SECTION A		
	(Questions 1 – 10 carry 1 marks)		
1	If P (A \cup B)=0.9 and P(A \cap B) =0.4 , then P(\bar{A})+P(\bar{B}) is	1	
	(a)0.3 (b)1 (c)1.3 (d)0.7		
2	If $ \vec{a} =3$, $ \vec{b} =4$ and $ \vec{a}+\vec{b} =5$, then $ \vec{a}+\vec{b} =$	1	
	(a)3 (b)4 (c)5 (d)8		
3	The vector of the direction of the vactor $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 is	1	
	(a) $\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ (b) $\frac{\hat{\imath} - 2\hat{\jmath} + 2\hat{k}}{3}$ (c) $3(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ (d) $9(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$		
4	The bounded feasible region of an LLP is always a	1	
	(a)Convex polygon (b)Concave polygon		
	(c)Either (a) or (b) (d)Neither (a) nor (a) nor (b)		
5	The feasible region corresponding to the linear constraints of a linear programming problem is	1	
	given below.		
	(0. 5)		
	A N I E D I I I I I I I I I I I I I I I I I		
	AN ED (0.2)		
	(10, 0)		
	d the summer of		
	Which of the following is not a constraint to the given linear programming problem?		
	(a) $x + y \ge 2$ (b) $x + 2y \le 10$ (c) $x - y \ge 1$ (d) $x - y \le 1$		
	$\begin{array}{c} \\ \\ \\ \\ \end{array}$	\perp	
6	If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b} > 0$ and $ \vec{a} \cdot \vec{b} = \vec{a} \times \vec{b} $; then angle between \vec{a} and \vec{b} is	1	
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{3\pi}{4}$		
7	If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of both X –axis and Z – axis , then the	1	
	angles which it makes with the positive direction of Y-axis is		
	(a)0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) π		
8	Given P(A)= 0.4 , P(B) = 0.7 and P(B A) = 0.6 , then P(AUB)=	1	
	(a)1.1 (b)0.86 (c)0.46 (d)0.16		
9	If \vec{a} is any non zero vector , the value of $(\vec{a}.\hat{\imath})\hat{\imath} + (\vec{a}.\hat{\jmath})\hat{\jmath} + (\vec{a}.\hat{k})\hat{k}$ is equal to	1	
	(a) \vec{a} (b) 2 \vec{a} (c) 3 \vec{a} (d) 4 \vec{a}		

10	Two statements are given, one labelled Assertion (A) and the other labelled Reason(R) Select the	1
	correct answer from the options (A), (B), (C) and (D) as given below.	
	(a)Both A and R are true and R is the correct explanation for A.	
	(b) Both A and R are true and R is not the correct explanation for A. (c) A is true but R is false.	
	(d) A is false but R is true	
	Assertion (A): A linear programming problem is to optimise objective functions.	
	Reason(R): Maximum or minimum of objective function lies at the corner points of bounded	
	feasible region.	<u> </u>
	SECTION B	
	(Questions 11 – 13 carry 2 marks)	
11	An ant is moving along the vector $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$. Few sugar crystals are kept along the vector	2
	$ \vec{b}=\widehat{3\imath}-2\hat{\jmath}+\hat{k}$ which is inclined at an angle 0 with the vector \vec{a} . Then find the angle θ . Also find	
	the scalar projection of $ec{a}$ on $ec{b}$	
12	A and B throw a die alternately till one of them gets a '6' and wins the game .Find their respective	2
13	probabilities of winning, if A starts the game first. (a)A and B take turns in throwing two dice; first to throw 9 is awarded a prize. If A throws first,	2
-3	what is the chance that B gets the prize?	_
	OR	
	(b)Two dice are thrown. Find the probability that the numbers that appeared have sum of 8 if it is	
	known that the second die always exhibits 4.	
	SECTION C	
	(Questions 14 – 15 carry 3 marks)	
14	Solve the following linear programming problem graphically :	3
	Minimise : $Z = x+2y$, subject to constraints : $x+2y \ge 100$, $2x-y \le 0$, $2x+y \le 200$, x , $y \ge 0$.	ļ
15	Bag I contains 4 white and 2 black balls . Bag II contains 3 white and 5 black balls. One ball is	3
	transferred from Bag I to Bag II and then a ball is drawn from bag II. The ball so drawn is found to	
	be black in colour. Find the probability that the transferred ball is black.	
	SECTION D	
	(Questions 16 – 17 carry 5 marks)	
16	(a)Find the vector and Cartesian equation of line which is perpendicular to the lines with	5
	equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{3-z}{-4}$ and passes through the points (1,1,1). Also	
	find the angle between the given lines.0 OR	
	(b) Find the foot of the perpendicular and image of the point P(1,6,3) with respect to the line $\frac{x}{1}$	
	$\frac{y-1}{2} = \frac{z-2}{3}$. Also find the equation of the perpendicular to the line from P.	
17	Find the image of the point (1,2,1) with respect to the line $\frac{x-3}{1} = \frac{y+1}{2} = \frac{z-1}{3}$. Also find the	5
	equation of the line joining the given point and its image.	
	SECTION E	
40	(Questions 18 – 19 carry 4 marks)	4
ΊX		→
18	Rohit . Jaspreet and Alia appeared for an interview for three vacancies the same nost. The	
18	Rohit, Jaspreet and Alia appeared for an interview for three vacancies the same post. The	
18	Rohit, Jaspreet and Alia appeared for an interview for three vacancies the same post. The probability of Rohit's selection is $\frac{1}{5}$, Jaspreet's selection is $\frac{1}{3}$ and Alia's selection is $\frac{1}{4}$. The event of selection is independent of each other.	

Based on the above information , answer the following questions:

- (i) What is the probability that at least one of them is selected?
- (ii)Find $P(\frac{G}{\overline{H}})$ where G is the event of Jaspreet's selection and \overline{H} denotes the event that Rohit is not selected.
- (iii)(a)Find the probability that exactly one of them is selected

OR

(b) Find the probability that exactly two of them are selected.

- In an office three employees James, Sophia and Oliver process incoming copies of a certain form.

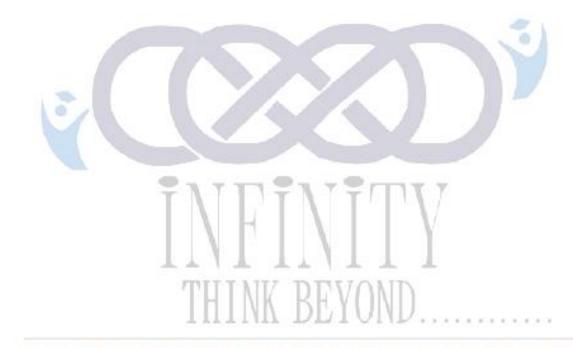
 James process 50% of forms, Sophia process 20% and Oliver the remaining 30% of forms. James has an error rate of 0.06, where as the error rate of Sophia and Oliver is 0.04, 0.03 respectively Based on the above information , answer the following questions
 - (i) Find the probability that Sophia processed and committed error
 - (ii) Find the probability of committing error in processing the form
 - (iii)(a)The manager of the company selects a forms has an error, find the probability that the form is not processed by James.

OR

(b)Let E be the event of committing an error in processing the form and let E_1 , E_2 and E_3 be the events that James, Sophia and Oliver processed the form . Find the volume $\sum_{i=1}^3 P(Ei/E)$.

THINK BEYOND.

AN EDUCATIONAL INSTITUTE


To get more sample papers, practice papers, study material for Maths (only for CBSE XI-XII)

Join my whatsapp group at link shared below

https://chat.whatsapp.com/E72LRTSsNjb6LPEGW2fVLt

TO GET MORE OPEN RESOURCE MATERIAL

AN EDUCATIONAL INSTITUTE