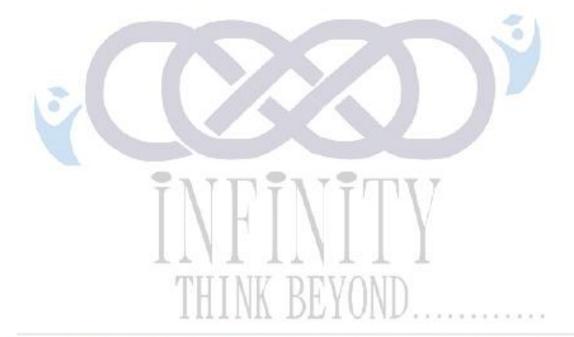

ANSWER KEY Pre Board Mock Test 06

1	dy	1
	$(a)x\frac{dy}{dx} + y = 0$	
2	$(c)\frac{1}{2}e^{2x}tanx+c$	1
3	(b) $x^6/6 + c$	1
4	(d) $i \neq j$	1
5	(c)0	1
6	(d)q=3p	1
7	(c)($\left(\pm\frac{1}{\sqrt{3}},\pm\frac{1}{\sqrt{3}},\pm\frac{1}{\sqrt{3}}\right)$)	1
8	$(a)\sqrt{3}$	1
9	(d)2and 4	1
10	(b)64	1
11	$(a)\frac{1}{\det A}$	1
12	$(b)^{\frac{\pi}{2}}$	1
13	(b)2	1
14	(c) 0	1
15	(d) Neither one-one nor onto	1
16	(b) p = q/2	1
17	(d) 1/y	1
18	(b) 4, not defined	1
19	(d)Assertion is false but Reason is true.	1
20	(a) Assertion is correct, reason is correct; reason is a correct explanation	1
	for assertion.	
21		2
	proving A ² -9A +2I =O and finding A ⁻¹ = $\frac{9I-A}{2}$	
22		2
	Let $\sin^{-1} \frac{3}{4} = x$ $\therefore \sin x = \frac{3}{4}$ $\therefore \cos x = \frac{\sqrt{7}}{4}$	
	L H S = $\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{\frac{1 - \frac{\sqrt{7}}{4}}{1 + \frac{\sqrt{7}}{4}}} = \frac{4 - \sqrt{7}}{3} = RHS$	E
23	$\int \frac{(x^2+1)}{(x^2+2)(x^2+3)} dx x^2 = t,$ $= \int \frac{t+1}{(t+2)(t+3)} dt$	2

	$\frac{t+1}{(t+2)(t+3)} = \frac{A}{(t+2)} + \frac{B}{(t+3)}$ $t+1 = A(t+3) + B(t+2)$ $Let: t = -2, -1 = A+0, A = -1,$ $t = -3, -2 = 0 - B, B = 2$ $= \int \frac{t+1}{(t+2)(t+3)} dt = \int \frac{-1}{(t+2)} dt + \int \frac{2}{(t+3)} dt$ $= -\log t+2 + 2\log t+3 + c$ $= 2\log x^2 + 3 - \log x^2 + 2 + c$	
	OR $I = \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx$ Put $\sin x = t \Rightarrow \cos x dx = dt$ $\therefore I = \int \frac{dt}{(1-t)(2-t)}$ $\Rightarrow A = 1, B = -1$ $Hence I = \int \frac{1}{(1-t)(2-t)} dt = \int \left(\frac{1}{(1-t)} - \frac{1}{2-t}\right) dx$ $= \int \frac{1}{1-t} dx - \int \frac{dt}{2-t} = -\log 1-t + \log 2-t + C$ $= \log \left \frac{2-t}{1-t}\right + C$ $= \log \left \frac{2-\sin x}{1-\sin x}\right + C$	
24	$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(x) = f(3)$ $f(3) = 4$ $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} 3x - 5 = 4$ $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 3^{-}} x + k = 3 + k$ $3+k = 4, k = 1$	2
25	the volume of a cube with radius "x" is given by $V = x^3$ and surface area = $6x^2$ Hence, the rate of change of volume "V' with respect to the time "t" is given by: $\frac{dV}{dt} = 9 \text{ cm}^3/\text{s}$ $9 = \frac{dV}{dt} = \frac{d}{dt}x^3 = 3x^2 \cdot \frac{dx}{dt}, \text{ By using the chain rule } \frac{dx}{dt} = \frac{3}{x^2}$ $\frac{ds}{dt} = \frac{d(6x^2)}{dt} = 12x \frac{dx}{dt} = 12x \frac{3}{x^2} = \frac{36}{x}$ At x= 10cm, $\frac{ds}{dt} = 3.6 \text{ cm}^2/\text{s}$ OR $p(x) = 41-72x-18x^2$ $P'(x) = -72 - 36$ $P'' = -36$ For maximum or minina or critical points $p'(x) = 0$ $-72 - 36x = 0, x = -2$ $x = -2, p'' (-2) = -36 < 0$ hence $x = -2$ is a point of local maxima, maximum profit = 113	2
26		



	3/5 = ½ + p - p/2 P = 1/5	
	OR Let E be the event that 'number 4 appears at least once' and F be the event that 'the sum of the numbers appearing is 6.	
	Then, E = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}	
	F = {(1,5), (2,4), (3,3), (4,2), (5,1)}	
	P(E) = 11/36 and $P(F) = 5/36$, $E \cap F = \{(2,4), (4,2)\},$ $P(E \cap F) = 2/36$	
	$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{2}{5}$	
30	C ⁴	3
	$\int_{1}^{4} [x-1 + x-2 + x-3] dx$	
	$\int_{1}^{4} x - 1 dx + \int_{1}^{4} x - 2 dx + \int_{1}^{4} x - 3 dx$	
	$= \int_{1}^{4} (x-1)dx + \int_{1}^{2} -(x-2)dx + \int_{2}^{4} (x-2)dx + \int_{1}^{3} -(x-3)dx + \int_{2}^{4} (x+3)dx$	
	For calculation 19	
	$\int_{1}^{4} [x-1 + x-2 + x-3] dx = \frac{19}{2}$	
31	SATESATSONY	3
	$e^{x} \tan y dx + (1-e^{x}) \sec^{2} y dy = 0$ $(1-e^{x}) \sec^{2} y dy = -e^{x} \tan y dx$	
	$\frac{\sec^2 y}{\tan y} dy = \frac{-e^x}{1 - e^x} dx$	
	$tany = 1 - e^{x}$ $log tany = log 1-e^{x} + log c $	
	log tany - log 1-e ^x = log c Taking exponential both sides	
32	tany = c (1-e ^x)	2
	the product of two matrices is 7 I	_
	And the inverse of $\begin{bmatrix} 1 & 2 & -3 \\ 3 & 2 & -2 \\ 2 & -1 & 1 \end{bmatrix}$ is 1/7 of $\begin{bmatrix} 0 & 1 & 2 \\ -7 & 7 & -7 \\ -7 & 5 & -4 \end{bmatrix}$	1
	Let $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 6 \\ 3 \\ z \end{bmatrix}$ using $X = A^{-1}B$, we get $x = 1, y = -5$ and $z = -5$.	
	123 [2]	2
33		1
		1

		A STATE OF THE STA	
		Evaluate : $\int_0^{\pi} \frac{x \tan x}{s e c x + \tan x} dx$	
		$I = \int_0^{\pi} \frac{(\pi - x) \tan(\pi - x)}{\sec(\pi - x) + \tan(\pi - x)} dx$	1
		$\int_0^\pi \frac{(\pi - x)\tan x}{\sec x + \tan x} dx$	1
		$I = \int_0^\pi \frac{x}{1 + \sin x} dx$	
			1
		$= \int_0^\pi \frac{\pi - x}{1 + \sin(\pi - x)} dx$ $\int_0^\pi \pi - x$	
		$= \int_0^\pi \frac{\pi - x}{1 + \sin x} dx$ $I + I = \int_0^\pi \frac{\pi}{1 + \sin x} dx$	
		$= \pi \int_0^\pi \frac{1 + \sin x}{\cos^2 x} dx$	
		$= \pi \int_0^{\pi} (\sec^2 x - \sec x \tan x) dx$	
		$=2\pi$	
-	34	$\Rightarrow l = \pi$	
		2x + 4y + 3z = 29000 5x + 2y + 3z = 30500	
		x +y + z = 9500	1
	1	matrix method AX=B X=A ⁻¹ B	
		IAI = -1	1/2
	1	adj $A = \begin{bmatrix} -1 & -1 & 6 \\ -2 & -1 & 9 \\ 3 & 2 & -16 \end{bmatrix}$ INSTITUT	2
		calculation X= 2500, y= 3000 and z =4000	1½
-	35		
			1
			1/2
			1 1/2
			1/2

	x-1 $y-2$ $z-3$ $x-2$ $y-4$ $z-5$		
	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$		
	$\overrightarrow{a_1} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k} , \overrightarrow{a_2} = 2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ $\overrightarrow{b_1} = 2\hat{\imath} + 3\hat{\jmath} + 4\hat{k} , \overrightarrow{b_2} = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$		
	$\overline{b_1} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \overline{b_2} = 3\hat{i} + 4\hat{j} + 5\hat{k}$	1/2	
	$\overrightarrow{a_2} - \overrightarrow{a_1} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$	1/2	
	$\overrightarrow{b_1} \times \overrightarrow{b_2} = -\hat{\imath} + 2\hat{\jmath} - \widehat{k}$		
	$ \overrightarrow{\mathbf{b}_1} \times \overrightarrow{\mathbf{b}_2} = \sqrt{6}$		
	$(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1}) = 1$	1/2	
		1/2	
	S.D. = d = $\left \frac{\overline{(b_1 \times \overline{b_2})} \cdot \overline{(a_2 - \overline{a_1})}}{ \overline{b_1} \times \overline{b_2} } \right $		
	Shortest distance = $d = \frac{1}{\sqrt{6}}$		
	The lines do not intersect		
	OR		
	Eq. of line $\vec{r} = \vec{a} + \lambda \vec{b}$		
	Line passes through (1,2,-4) and let (a,b,c) be the direction ratio of line then		
	Eq of line is		
	$\vec{r} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(a\hat{\imath} + b\hat{\jmath} + c\hat{k})$		
	Line is perpendicular to the lines		
36			
•	i) R ₄		
		1	
	ii) R ₅	1	
	(iii)A- R ₁	2	
	##DP ((1.1) (2.2) (2.2) (2.1) (2.1) (2.2)		
	iii)B-{(1,1), (2,2), (3,3), (2,1), (3,1), (2,3)}		
	\$ N T P \$ N Y \$ TD Y Y		
37	Let A he the event that the dector visit the national late and let E. E. E.		
	Let A be the event that the doctor visit the patient late and let E ₁ , E ₂ , E ₃ ,		
E ₄ be the events that the doctor comes by cab, metro, bike and other			
	means of transport respectively.		
	means of transport respectively. P(E1)=0.3, P(E2)=0.2, P(E3)=0.1, P(E4)=0.4		
	means of transport respectively. $P(E1)=0.3$, $P(E2)=0.2$, $P(E3)=0.1$, $P(E4)=0.4$ $P(A E_1) = Probability that the doctor arriving late when he comes by cab$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A\ I\ E_1)=Probability\ that\ the\ doctor\ arriving\ late\ when\ he\ comes\ by\ cab=0.25Similarly,\ P\ (\ A\ I\ E_2)=0.3,$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A\ I\ E_1)=Probability\ that\ the\ doctor\ arriving\ late\ when\ he\ comes\ by\ cab=0.25Similarly,\ P\ (A\ I\ E_2)=0.3,$ $P\ (A\ I\ E_3)=0.35\ and\ P(A\ I\ E_4)=0.1$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$	E	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A\ I\ E_1)=Probability\ that\ the\ doctor\ arriving\ late\ when\ he\ comes\ by\ cab=0.25Similarly,\ P\ (A\ I\ E_2)=0.3,$ $P\ (A\ I\ E_3)=0.35\ and\ P(A\ I\ E_4)=0.1$	E	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$	E	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$	1	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$	1	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly},\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$	1	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab} = 0.25 \text{Similarly,}\ P(A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and } P(A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$ $(iii)P(E_3/A) + P(E_4/A) = \frac{P(E_3)P\left(\frac{A}{E_1}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_3}\right)} = \frac{5}{14}$		
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab} = 0.25\text{Similarly,}\ P(\ A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35\ \text{and}\ P(\ A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25\text{x}0.3 + 0.3\text{x}0.2 + 0.1\text{x}0.35 + 0.4\text{x}0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$ $(iii)\ P(E_3/A) + P(E_4/A) = \frac{P(E_3)P\left(\frac{A}{E_1}\right) + P(E_3)P\left(\frac{A}{E_2}\right) + P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_4)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{5}{14}$ OR	1	
	means of transport respectively. $P(E1)=0.3, P(E2)=0.2, P(E3)=0.1, P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab}$ $= 0.25 \text{Similarly, P (A \mid E_2)} = 0.3,$ $P(A \mid E_3) = 0.35 \text{ and P (A \mid E_4)} = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25 \times 0.3 + 0.3 \times 0.2 + 0.1 \times 0.35 + 0.4 \times 0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$ $(iii)P(E_3/A) + P(E_4/A) = \frac{P(E_3)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{5}{14}$ OR $P(E_1/A) + P(E_2/A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P(A/E_2)$	1	
	means of transport respectively. $P(E1)=0.3,\ P(E2)=0.2,\ P(E3)=0.1,\ P(E4)=0.4$ $P(A \mid E_1) = \text{Probability that the doctor arriving late when he comes by cab} = 0.25\text{Similarly,}\ P(\ A \mid E_2) = 0.3,$ $P(A \mid E_3) = 0.35\ \text{and}\ P(\ A \mid E_4) = 0.1$ $P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)$ $P(A) = 0.25\text{x}0.3 + 0.3\text{x}0.2 + 0.1\text{x}0.35 + 0.4\text{x}0.1 = 0.21$ $(i)P(E_4/A) = \frac{P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{4}{21}$ $(ii)P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{2}{7}$ $(iii)\ P(E_3/A) + P(E_4/A) = \frac{P(E_3)P\left(\frac{A}{E_1}\right) + P(E_3)P\left(\frac{A}{E_2}\right) + P(E_4)P(A/E_4)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_4)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right) + P(E_4)P\left(\frac{A}{E_4}\right)} = \frac{5}{14}$ OR	1	

(i)we have $\overrightarrow{OA} = 8\hat{\imath} \ km \ \overrightarrow{AB} = 6\hat{\jmath} km$		
vector distance from Gitika's house to school $=8\hat{i}+6\hat{j}$	1	
(ii)vector distance from school to Alok's house		
$= 6\cos 30^{\circ} \hat{i} + 6\sin 30^{\circ} \hat{j}$	1	
$=3\sqrt{3}\hat{\imath}+3\hat{\jmath}$		
(iii)vector distance from Gitika's house to Alok's house=	2	
$8\hat{i} + 6\hat{j} + 3\sqrt{3}\hat{i} + 3\hat{j}$		
$=(8+3\sqrt{3})\hat{i}+9\hat{j}$		
OR		
The total distance travel by Gitika from her house to Alok's house =		
(8 + 6 + 6) km = 20 km		
	-	

AN EDUCATIONAL INSTITUTE