KENDRIYA VIDYALAYA SANGATHAN, PATNA REGION

PRE-BOARD I (2025-26)

Class: 12 F.M: 80 (SET-A)

Subject: Mathematics Time: 3Hrs

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists 38 questions divided into 5 sections A, B, C, D &E.
- 3. Section A consist 18 MCQ and 2 ASSERTION-REASON BASED QUESTIONScarry 1 mark each, section B consist 5 questions carry 2 mark each, section C consist 6 questions carry 3 mark each, section D consist 4 questions carry 5 mark each, section E consist 3 questions (CASE BASED STUDY) carry 4 marks each.
- 4. There is no overall choice. However, and internal choice has been provided in 2 questions in section B, 3 questions in section C, 2 questions in sections D & 2 questions in sections E
- 5. Use of calculator is not permitted

(a) 4

(c) 8

USE	of calculator is not permitted.
	Section A
1.	The maximum number of equivalence relation on the set A= {1,2,3} are
(a)	1 (b) 2
(c)	3 (d) 5
2.	Set A has 3 elements and the set B has 4 elements, then the number of
	injective function that can be defined from A to B is
(a)	144 (b) 12
(c)	24 (d) 64
3.	If $y = sin^{-1}x$, $-1 \le x \le 0$ then the range of y is
(a)	$(\frac{-\pi}{2},0)$ (b) $[\frac{-\pi}{2},0]$
(c)	$\left[\frac{-\pi}{2},0\right)$ (d) $\left(\frac{-\pi}{2},0\right]$
4.	If $A = \begin{bmatrix} a & c & -1 \\ b & 0 & 5 \\ 1 & -5 & 0 \end{bmatrix}$ is a skew symmetric metrix, then the value of 2a-(b+c) is
(a)	0 (b) 1
	-10 (d) 10
5.	For a square matric A , $A^2 - 3A + I = 0$ and $A^{-1} = xA + yI$ then the value of x+y
	is
(a)	-2 (b) 2
(c)	

6. If |A|=2, where A is a 2×2 matrix then $|4A^{-1}|$ equals

(b) 2 (d) $\frac{1}{32}$

	(3x+5, x>2)
7. The value of k for w	which $f(x) = \begin{cases} 3x + 5, & x \ge 2 \\ kx^2, & x < 2 \end{cases}$ is a continuous function, is
(a) $\frac{-11}{4}$	(b) $\frac{4}{11}$
(c) 11	(d) $\frac{11}{4}$
	4
8. The function f(x)=[x	(), where [x] denotes the greatest integer function, is continuous
at	
(a) 4	(b) -2
(c) 3	(d) 1.5
9. If $siny = x \cdot cos(a)$	$+ y)$ then $\frac{dy}{dx}$ is
(a) $\frac{\cos a}{\cos^2(a+y)}$	(b) $\frac{-\cos a}{\cos^2(a+y)}$
(a) $\frac{\cos a}{\cos^2(a+y)}$ (c) $\frac{\cos a}{\sin^2 y}$	(d) $\frac{-\cos a}{\sin^2 y}$
	$Ssin4t$ then $\frac{d^2x}{dt^2}$ is equal to
(a) X	(b) -x
(c) 16x	(d) -16x
	$=x^2-4x+6$ is increasing in the interval
(a) (0,2)	(b) $(-\infty, 2]$
(c) [1,2]	(d) [2,∞) (e)
$12. \int e^x [\sec x(1+\tan x)]$	(n x) dx is
(a) e^x . $\cos x + c$	
(c) e^x . $tan x + c$	(d) $e^x \cdot \cot x + c$
13. $\int_{-1}^{1} x x dx$ is	
(a) $\frac{1}{6}$	(b) $\frac{1}{3}$
(c) $-\frac{1}{6}$	(d) $\overset{\circ}{0}$
· ·	bounded by the curve $y^2=4x$ and the x-axis between x=0 and
x=1 is	
(a) $\frac{2}{3}$	(b) $\frac{8}{2}$
(c) 3	(b) $\frac{8}{3}$ (d) $\frac{4}{3}$
.,	(4) 3
15. The difference of o	rder and degree of the differential equation $\frac{d}{dx} \left(\frac{dy}{dx} \right)^3 = 0$ is
(a) 0	(b) 1
(c) 2	(d) 3
	(e)
	which the vectors $2\hat{\imath}+p\hat{\jmath}+\widehat{k}$ and $-4\hat{\imath}-6\hat{\jmath}+26\widehat{k}$ are
perpendicular to ea	ach other, is
(a) 3	(c) -3
(c) $\frac{-17}{3}$	(d) $\frac{17}{3}$
3	3

17. If the points P(a, b, 0) lies on the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{4}$, then(a, b) is

(b)
$$\left(\frac{1}{2}, \frac{2}{3}\right)$$

(c)
$$(\frac{1}{2}, \frac{1}{4})$$

18. The objective function Z = ax + by of an LPP has maximum value 42 at (4,6) and minimum value 19 at (3,2), which of the following is true?

(a)
$$a=9$$
, $b=1$

(c)
$$a=3$$
, $b=5$

(d)
$$a=5$$
, $b=3$

ASSERTION-REASON BASED QUESTIONS

Question number 19 & 20 are Assertions(A) and Reason(R) based question carrying 1 mark each. The two statements are given, one labelled Assertion(A) & one labelled Reason(R). Select the correct answer from the option given below.

(a) Both A and R are true and R is the correct explanation of A.

(b) Both A and R are true but R is not the correct explanation of A.

(c) A is true but R is false.

(d) A is false but R is true.

19. Assertion(A): In a linear programming problem if the feasible region is empty, then the linear programming problem has no solution.

Reason(R): A feasible region is defined as the region that satisfies all the constraints.

20. Assertion(A): If
$$P(A) = \frac{1}{2}$$
, $P(A \cap B) = \frac{1}{3}$, then $P(A/B) = \frac{2}{3}$

Reason(R):
$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Section B

21. Find
$$k$$
 so that $f(x)=\begin{cases} \frac{x^2-2x-3}{x+1}, & x\neq -1\\ k, & x=-1 \end{cases}$ is continuous at $x=-1$

Check the differentiability of the function f(x) = x|x| at x = 0

22. If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 3 \\ 3 & 3 & 5 \end{bmatrix}$$
, then find A(adjA)

23. Simplify
$$sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$

[OR]

Find the domain of $\sin^{-1} \sqrt{x-1}$

24. Find the values of a for which $f(x) = x^2 - 2ax + b$ is an increasing function for x > 0.

25. Calculate the area of the region bounded by the curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the x-axis using Integration.

Section C

26. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $R = \{(a,b): a,b \in Z, |a-b| \text{ is divisible by 3}\}$ is an equivalence relation. [OR]

Let $A = R - \{2\}$ and $B = R - \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is a bijective function.

27. Find $\frac{dy}{dx'}$ if $(Cosx)^y = (Cosy)^x$

[OR]

If
$$x = a(\theta - \sin \theta)$$
, $y = a(1 - \cos \theta)$, $a > 0$, then find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{3}$.

- 28. Find $\int_0^{\frac{\pi}{4}} \frac{x + \sin x}{1 + \cos x} dx.$
- 29. Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 18$.
- 30. Solve the following linear programming problem graphically:

Maximise Z = 3x + 9y

Subject to constraints:

$$x + y \ge 10, x + 3y \le 60, x \le y, x \ge 0, y \ge 0.$$

31. The probability of two students A and B coming to school in time are $\frac{2}{7}$ and $\frac{4}{7}$ respectively. Assuming that the events 'A coming on time' and 'B coming on time' are independent. Find the probability of only one of them coming to school on time

[OR]

A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.

Section D

32. If $A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$ then find A^{-1} . Hence solve the system of linear equations:

$$x-2y=10$$
; $2x-y-z=8$ and $-2y+z=7$

33. Evaluate: $\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$

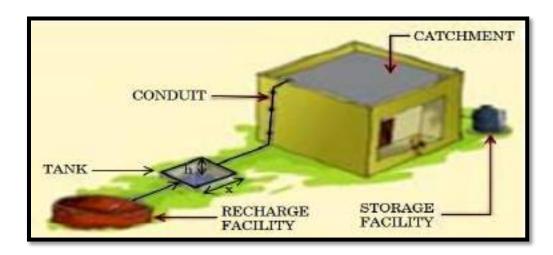
[OR]

Evaluate: $\int_0^{\pi} \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$

34. Find the particular solution of the differential equation $x\frac{dy}{dx}+xcos^2\frac{y}{x}=y$; given that when $x=1,y=\frac{\pi}{4}$.

[OR]

Find the general solution of the differential equation:


$$(x^2+1)\frac{dy}{dx} + 2xy = \sqrt{x^2+4}$$

35. Find the shortest distance between the lines: $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$ and $\frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}$

Section E (CASE STUDY)

36. In order to set up a rain water harvesting system, a tank to collect rain water is to be dug. The tank should have a square base and a capacity of 250 m^3 . The cost of land is ₹ 5,000 per square metre and cost of digging increases with depth and for the whole tank, it is ₹40,000 h^2 , where h is the depth of the tank in metres. x is the side of the square base of the tank in metres.

ELEMENTS OF A TYPICAL RAIN WATER HARVESTING SYSTEM

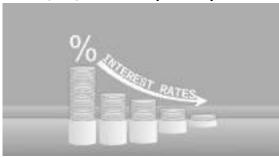
Based on the above information, answer the following questions:

- (i) Find the total cost C of digging the tank in terms of x.
- (ii) Find $\frac{dc}{dx}$.
- (iii) Find the value of x for which cost C is minimum.

[OR]

Check whether the cost function C(x) expressed in terms of x is increasing or not, Where x>0.

37. The equation of motion of a missile are x = 3t, y = -4t, z = t, where the time 't' is given in seconds, and the distance is measured in kilometres.


- (i) Write the path of the missile.
- (ii) Find the distance of the missile from the starting point (0, 0, 0) in 5 seconds.
- (iii) If the position of the missile at a certain instant of the time is (5, -8, 10). Find the height of the missile from the ground? (Ground considered as xy plane)

[OR]

Find the value of k for which the lines

$$\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{k}$$
 and
$$\frac{x-2}{-2} = \frac{y-3}{-1} = \frac{z-5}{7}$$
 are perpendicular?

38. A bank offers loans to its customers on different types of interest namely, fixed rate, floating rate, and variable rate. From the past data with the bank, it is known that a customer avails loan on fixed rate, floating rate, or variable rate with probabilities 10%, 20%, and 70% respectively. A customer after availing loan can pay the loan or default on loan repayment. The bank data suggests that the probability that a person defaults on loan after availing it at fixed rate, floating rate, and variable rate is 5%, 3%, and 1% respectively.

Based on the above information, answer the following:

- (i) What is the probability that a customer after availing the loan will default on the loan repayment?
- (ii) A customer after availing the loan, defaults on loan repayment. What is the probability that he availed the loan at a variable rate of interest?

THE END	•••
---------	-----