	MARKING SCHEME Mock Test 07 Standard Maths 041	
	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(c) 3, 420	1
2.	(b) $x^2 + 4x + 4$	1
3.	(b) 55 cm	1
4.	(c) 5	1
5.	(c) 5 / 12	1
6.	c) $ac=b^2/4$	1
7.	b) 20 cm	1
8.	b) 7.	1
9.	(c) 2	1
10.	(c) 3	1
11.	(b) 1 / 2	1
12.	(d) 5cm	1
13.	(d) 3/13 cm	1
14.	(c) 17 <i>x</i>	1
15.	(a) 3.5	1
16.	(b) 5 cm	1
17.	(c) similar but not congruent.	1
18.	(a) 1/2	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the	1
	correct explanation of assertion (A) SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	AP is 60,63, 66,,	
۷۱.	Here a=60, d = 63-60 = 3	1
	using the formula $Sn = n/2 \{2a+(n-1)d\} = 20/2 [120+57] = 1770.$	1
	Or	Or
	We can write $2x+1-(x+3)=(x-7)-(2x+1)$	•
	2x+1-x-3=x-7-2x-1	1
	x-2=-x-8	
	x+x=-8+2	

	2x=-(6)	
	value of x is -3.	1
22.	M P	
	In Δ KMN, we have PQ MN , \therefore KP / PM = KQ / QN [Basic proportionality Theorem] $4/13$ = KQ / (20.4 – KQ) \Rightarrow $4(20.4$ – KQ) = 13KQ \Rightarrow 81.6 – 4KQ = 13KQ \Rightarrow 17KQ = 81.6 KQ= 81.6/17= 4.8 cm	1
23.	R.H.S. = $x^2 + y^2 = (a \cos \theta - b \sin \theta)^2 + (a \sin \theta + b \cos \theta)^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta - 2ab \cos \theta \sin \theta + a^2 \sin^2 \theta + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta)$	1
	$= a^{2} + b^{2} = L.H.S$ Or $4 + 4 tan^{2} A = 4 (1 + tan^{2} A)$ $= 4 (sec^{2} A)$ $= 4 (5/2)^{2} = 25$	1 Or 1
24.	$\angle ABQ = 1 / 2 X 58 = 29^{\circ}, \angle BAT = 90^{\circ},$ $\angle ATB = 180^{\circ} - (90 + 29)$ $= 61^{\circ}$	1
25.	Length of minute hand can be considered as radius (r) = 14 cm. In 60 minutes the minute hand rotates 360°. So, in 5 minutes, it will rotate = $\frac{360^{\circ}}{60} \times 5 = 30^{\circ}$.	***
A	We know that, Area of sector of angle θ and radius $r = \frac{\theta}{360^{\circ}} \times \pi r^2$	TUI
	Substituting values we get : $\Rightarrow \text{Area} = \frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14^{2} = \frac{1}{12} \times 22 \times 2 \times 14 = \frac{154}{3} \text{ cm}^{2}.$	
	Hence, the area swept by the minute hand in 5 minutes = $\frac{154}{3}$ cm ²	1
	SECTION C Section C consists of 6 questions of 3 marks each.	
26.	Let us assume on the contrary that $3 + 2\sqrt{5}$ is rational. Then, there exist co-prime positive integers a and b such that $3 + 2\sqrt{5} = a/b$	
	$=> 2\sqrt{5} = a/b - 3$	1

	. /5 / 01)/01	1	1
	$=>\sqrt{5}=(a-3b)/2b$	1	
	Since, a and b are integers and thus $a-3b/2b$ is a rational number. Thus $\sqrt{5}$ is rational.		
	But this contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect.		
	Hence, $3 + 2\sqrt{5}$ is an irrational number.	1	
27.	Let $p(x) = 4x^2 - 4x + 1$		
	Zero of the polynomial is the value of x where $p(x) = 0$ Putting $p(x) = 0$		
	$4x^2 - 4x + 1 = 0$ We find roots using splitting the middle term method		
	$4x^2 - 2x - 2x + 1 = 0,$		
	2x(2x-1) - 1(2x-1) = 0,	N.	
	(2x-1)(2x-1)=0		
	X=1/2,1/2	A	
	Splitting the middle term method.	1 ½	
	Therefore, $\alpha = 1/2 \& \beta = 1/2$ are the zeroes of the polynomial		
	Now, Verifying relationship b/w zeroes and coefficients $p(x) = 4x^2 - 4x + 1$		
	Comparing with $ax^2 + bx + c$, $a = 4$, We have to verify Sum of zeroes = $-(Coefficient\ of\ x)/(Coefficient\ of\ x^2)$ i.e. $\alpha + \beta = -b/a$, $\alpha + \beta = 1/2 + 1/2 = 2/2 = -b/a = -(-4/4) = 1$, $\alpha \beta = 1/2 \times 1/2 = 1/4$, $c/a = 1/4$		
	Since, L.H.S = R.H.S Hence relationship between zeroes &	1 ½	
A	Coefficient is verified Or	TU	TE
	Let the zeros be α and β	Or	
	Sum of Zeroes of 2x ² +7x+6 is		
	$(\alpha + \beta) = -7/2$ Product = $(\alpha \times \beta) = 3$		
	$3\alpha + 3\beta = 3(\alpha + \beta) = 3X(-7/2) = (-21/2)$		
	product = $3\alpha.3\beta = 9(\alpha.\beta) = 9x3 = 27$		
	so Polynomial	1 ½	
	= x^2 - (sum of the roots) x + product of the roots		
	x^2 -(- 21/2)x +27		

	$x^2 + 21x/2 + 27 = 2x^2 + 21x + 54$	1 ½	
28.	Let x be the fixed charge and y be the cost of food per day.		
20.	For student A, who pays Rs. 1380 for 22 days of food: $x + 22y = 1380$ (Equation 1)	1/2	
	For student B, who pays Rs. 1680 for 28 days of food: $x + 28y = 1680$ (Equation 2)	1/2	
	To find the values of x and y		
	we can subtract Equation 1 from Equation 2:		
	(x + 28y) - (x + 22y) = 1680 - 1380,		
	6 <i>y</i> =300		
	$y = \frac{300}{6} = 50$	1	
	<i>y</i> =50	A	
	The cost of food per day (y)is 50	/	
	Now, substitute the value of y into either Equation 1 or Equation 2 to find the value of x		
	Using Equation 1: $x + 22(50) = 1380$ x + 1100 = 1380 x = 1380 - 1100 x = 280	1	
	The fixed charges (x) are Rs. 280.		
	Or THINK BEYOND	Or	
	Let the two-digit number be represented as 10x+y,		
A	The product of the digits is 18: xy=18	TU	
	When 63 is subtracted from the number, the digits interchange their		
	places: 10x+y-63=10y+x	1	
	10x-x+y-10y=63		
	9x−9y=63 x−y=7(Equation 1)		
	Now we have two equations:		
	1. xy=18 (Equation 2)		
	2. x-y=7 (Equation 1)		
	From Equation 1,		
	x=y+7		

	From Equation 2: $(y+7)y=18$ $y^2+7y-18=0$ $y^2+7y-18=0$ $y^2+(9-2)y-18=0$ $y^2+9y-2y-18=0$ $y(y+9)-2(y+9)=0$ $(y+9)(y-2)=0$ either $y+9=0 \rightarrow y=-9$ (not valid since y must be a digit) or $y-2=0 \rightarrow y=2$ Substituting $y=2$ back into $x=y+7$:		
	x=2+7=9 Thus, the two-digit number is: 10x+y=10(9)+2=90+2=92	2	
29.	$\sin \theta = 1/2$, $\sin \theta = \sin 30^{\circ}$ $\Rightarrow \theta = 30^{\circ}$ L.H.S = $3 \cos \theta - 4 \cos^{3} \theta$ = $3 \cos 30^{\circ} - 4 \cos^{3}(30^{\circ})$ = $3 \times \sqrt{3}/2 - 4(\sqrt{3}/2)^{3}$ = $3\sqrt{3}/2 - 4(3\sqrt{3}/8)$ = $3\sqrt{3}/2 - 3\sqrt{3}/2$ = $0 = RHS$	1/2 1/2 1 1	
30.	P C TILLI S NK BEYOND	 TU	TE
	ABCD is a II gm	1	
	AP = AS , BP = BQ , CR = CQ , DR = DS [By theorem]		
	By adding the above we get AB + DC = AD + BC	1	
	⇒2 $AB=2 BC$ ⇒ $AB=BC$ Therefore , ABCD is a rhombus.	1	
	Area of rhombus = $1/2 X$ product of diagonals = $1/2 X 2.5 X 3.2$	1	

=4 <i>sq km</i> . Total number of balls = 19 (i) Prime numbers from 1 to 19 are 2, 3, 5, 7, 11, 13, 17, 19 = Total 8 prime numbers	
(i) Prime numbers from 1 to 19 are 2, 3, 5, 7, 11, 13, 17, 19 = Total	
 ∴ Probability of drawing a prime number = 8 /19 (ii) Numbers divisible by 3 or 5 are 3, 6, 9, 15, 18, 10, 5, 12 = Total 8 numbers ∴ Probability of drawing a number divisible by 3 or 5 = 8 / 19 (iii) Number divisible by 5 and 10 are 5, 10, 15 = Total 3 ∴ Numbers which are neither divisible by 5 nor 10 are 19 – 3 = 16 ∴ Probability of drawing a number which is neither divisible by 5 nor by 10 = 16 /19 	1
	A.
SECTION D	A
	7
Let Side of 1st square = x cm Then side of 2nd square = x + 4 cm	1
Area of 2nd = $(x+4)^2$	1
$x^{2} + x^{2} + 16 + 8x = 400$ $2x^{2} + 8x - 384 = 0$ $x^{2} + 4x - 192 = 0$	1
x(x+16) - 12(x+16) = 0 (x+16)(x-12) = 0 X = -16, 12	1
dimensions of 1st square = 12 cm each side	1
difficultion of Zila square - 12T4 - 10 cm cach sluc	
(i)	
A	
N	
P	
	8 numbers \therefore Probability of drawing a number divisible by 3 or 5 = 8 / 19 (iii) Number divisible by 5 and 10 are 5, 10, 15 = Total 3 \therefore Numbers which are neither divisible by 5 nor 10 are 19 - 3 = 16 \therefore Probability of drawing a number which is neither divisible by 5 nor by 10 = 16 /19 Section D consists of 4 questions of 5 marks each. Let Side of 1st square = x cm Then side of 2nd square = x + 4 cm Area of 1st = x^2 Area of 2nd = $(x+4)^2$ $x^2 + (x+4)^2 = 400$ $x^2 + x^2 + 16 + 8x = 400$ $2x^2 + 8x - 384 = 0$ $x^2 + 4x - 192 = 0$ $x^2 + 16x - 12x - 192 = 0$ $x(x+16) - 12(x+16) = 0$ $(x+16)(x-12) = 0$ $x = -16, 12$ so $x = 12$ as it can not be negative

According to the basic proportionality theorem as stated above, we need to prove:

AP/PB = AQ/QC

Construction

Join the vertex B of \triangle ABC to Q and the vertex C to P to form the lines BQ and CP and then drop a perpendicular QN to the side AB and also draw PM \perp AC as shown in the given figure.

Proof

Now the area of $\triangle APQ = 1/2 \times AP \times QN$ (Since, area of a triangle= $1/2 \times Base \times Height$)

Similarly, area of $\triangle PBQ = 1/2 \times PB \times QN$

area of $\triangle APQ = 1/2 \times AQ \times PM$

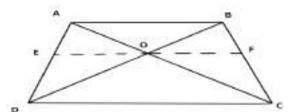
Also, area of $\triangle QCP = 1/2 \times QC \times PM \dots (1)$

Now, if we find the ratio of the area of triangles $\triangle APQ$ and $\triangle PBQ$, we have

(area of \triangle APQ / \triangle PBQ =(1/2 x AP x QN) / (½ x PB x QN) = AP/PB

Similarly,

(area of \triangle APQ / \triangle QCP =(1/2 x AQ x PM) / (½ x QC x PM) = AQ/QC(2)


According to the property of triangles, the triangles drawn between the same parallel lines and on the same base have equal areas.

Therefore, we can say that $\triangle PBQ$ and QCP have the same area. area of $\triangle PBQ$ = area of $\triangle QCP$ (3)

Therefore, from the equations (1), (2) and (3) we can say that, AP/PB = AQ/QC

3

(ii)

In trapezium ABCD with AB//DC , drawing a line EF//CD Now according to Basic Proportionality Theorem which states that "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".

Now in ,ΔADC

Since EO//CD (from construction)

	AE(ED AO(OO(D D : D : : : : : : : : : : : : : : : :	
	AE/ED =AO/OC(By Basic Proportionality Theorem) (i)	
	Also in ΔADB	
	AE/ED=BO/OD(By Basic Proportionality Theorem) (ii)	
	Now comparing equations (i) and (ii)	
	AO/OC=BO/OD	
	AO/BO=CO/OD (cross multiplying)	
	Hence proved.	
	'	
		2
34.	Given, in trapezium ABCD,AB=18Cm, CD=32 cm	
· · ·	AB//CD and distance between parallel lines = 14 cm	
	and the radius of each sector =7 cm.	
	Area of trapezium ABCD= $\frac{1}{2}$ (18+32)X14 = $\frac{1}{2}$ X 50 X 14 = 350 CM ²	
	. ,	2
	Let, $\triangle A = \theta 1$, and $\triangle B = \theta 2$, $\triangle C = \theta 3$, $\triangle D = \theta 4$	2
	area of sector A= $(\theta 1/360) \pi r^2$	
	$= (\theta 1/360)X (22/7) X 7X7 = (\theta 1/360)X154$	
	area of sector B= (θ2/360)X154	100
	area of sector $C = (\theta 3/360)X154$	Table 1
	area of sector D= $(\theta 4/360)X154$	1
	Area of 4 sectors= $\{(\theta 1 + \theta 2 + \theta 3 + \theta 4)/360\}x154$	1
	$= (360 / 360) \times 154 = 154 \text{Cm}^2$	4
	Area of shaded region = area of trapezium - area of 4 sectors =	1
	350 - 154 = 196Cm ²	'
	330 - 134 - 1300III	1
	Or	'
	OI -	
	1	
		OR
	/ \ g	
	/—————————————————————————————————————	
	IIIIIII DDIVID	
		1808
	The capsule is composed of a cylinder and two hemispheres.	
A	The given dimensions are:	
W 100 W	 Total length of the capsule = 14 mm 	1
	 Diameter of the capsule = 6 mm 	
	From these dimensions, we can determine the radius and the	
	height of the cylindrical part.	
	Radius (r) of the capsule =	
	\	4
	$\frac{6\text{mm}}{2} = 3\text{mm}$	1
	 Height (h) of the cylindrical part = Total length - (radius of 	
	one hemisphere + radius of the other hemisphere)	
	• $h = 14$ mm $- (3$ mm $+ 3$ mm $) = 14$ mm $- 6$ mm $= 8$ mm	
	 Surface area of the capsule = Curved surface area of 	1
	cylinder + Surface area of sphere	
	•	
	$A = 2\pi rh + 4\pi r^2$	
	$A = 2\pi(3)(8) + 4\pi(3)^2$	
	$A = 2\pi r h + 4\pi r^{2}$ $A = 2\pi (3)(8) + 4\pi (3)^{2}$	

			(Allowerkey)			
			$A = 48\pi + 36\pi$ $A = 84\pi \text{mm}^2$ $= 84 \times \left(\frac{22}{7}\right) = 264$	4mm²	1 ½	
	Volume of the capsule = Volume of cylinder + Volume of sphere					
		•	$V = \pi r^2 h + \frac{4}{3} \pi r$			
			V = RV R + 3RV			
			$V = \pi(3)^2(8) + \frac{4}{3}\pi$	$-(3)^3$		
			$7 = 72\pi + \frac{4}{3}\pi(27)$			
			U			
			$V = 72\pi + 36\pi$ $V = 108\pi \text{mm}^3$			
				2	1 ½	
		V = 108	$8 \times \left(\frac{22}{7}\right) = 339.431$	mm ³	1 , , 2	
	Answer:		1	-1-1		
	The surface a	rea of the ca	apsule is approxima	ately	N. Control	
	263.76mm ² / ₄₇	- 3 14) / 4	$264 \text{mm}^2 (\pi = \frac{22}{7})$		4	
	All and the second seco	A STATE OF THE PARTY OF THE PAR				
	and its volume 339.12 mm ³ $(\pi$		339.43mm ³ ($\pi = \frac{2}{3}$	2	_4"	
	339.121111111 (//	- 3.14) /	339.43111111° ($\pi = \frac{1}{2}$	7		
35.	Class		frequency	cf		
	0-5		4	4		
	5-10	9 T Y	6, 0, ,	10		
	10-15		10	20		
	15-20		f1	20+f1	1	
	20-25		25	45+f1		
	25-30 30-35		f2 18	45+f1+f2 63+f1+f2		
	35-40		5 / D /	68+f1+f2		
			INA DEY	U A U	NE CALCON	
	Median = 24	, , ,	and and 100 to		C PT-47	
A	So, median cla			Alanau Madie S.T.	1	
100		$I = 20$. $h = 5$, $n/2 = 50$, $cf = 20 + f1$, $f = 25$, We know, Median = $I + I(r_0 + r_0) = f(r_0 + r_0)$				
il .	$[\{(n/2 - cf)/f\} \times h]$ $\Rightarrow 24 = 20 + [\{50 - (20 + f1)\}/25] \times 5$					
		-	X 5		1	
		-	X 5		1	
	⇒24=20+[{50- ⇒4=(30-f1)/5 ⇒30-f1=20	-	X 5		1	
	⇒24=20+[{50- ⇒4=(30-f1)/5 ⇒30-f1=20 ⇒f1=10	-(20+f1)}/25].		0 400 11 15 55	1	
	⇒24=20+[{50- ⇒4=(30-f1)/5 ⇒30-f1=20 ⇒f1=10 Also, sum of f	-(20+f1)}/25]. requencies =		2 = 100 ⇒ f1 + f2 = 32	2	
	⇒24=20+[{50· ⇒4=(30-f1)/5 ⇒30-f1=20 ⇒f1=10 Also, sum of f ⇒ 10 + f2 = 32	-(20+f1)}/25]. requencies = 2 ⇒ f2 = 22		2 = 100 ⇒ f1 + f2 = 32		
	⇒24=20+[{50- ⇒4=(30-f1)/5 ⇒30-f1=20 ⇒f1=10 Also, sum of f	-(20+f1)}/25]. requencies = 2 ⇒ f2 = 22		2 = 100 ⇒ f1 + f2 = 32	2	
	⇒24=20+[{50· ⇒4=(30-f1)/5 ⇒30-f1=20 ⇒f1=10 Also, sum of f ⇒ 10 + f2 = 32	-(20+f1)}/25]. requencies = 2 ⇒ f2 = 22		2 = 100 ⇒ f1 + f2 = 32		
	⇒24=20+[{50· ⇒4=(30·f1)/5 ⇒30·f1=20 ⇒f1=10 Also, sum of f ⇒ 10 + f2 = 32 ∴ f1 = 10, f2 =	-(20+f1)}/25]. requencies = 2 ⇒ f2 = 22 - 22.			2	

	From the table and the modal class (45-60), we can identify the	1	
	following values:		
	(lower limit of the modal class) = 45		
	(class size) =h= 60 - 45 = 15		
	f1(frequency of the modal class) = 15		
	f0(frequency of the preceding class) = a	1	
	f2(frequency of the succeeding class) = 10		
	Substitute these values and the given mode (55) into the formula:		
	$55 = 45 + \left(\frac{15 - a}{2(15) - a - 10}\right) \times 15$		
	(=(15) 16 15)		
	$10 = \left(\frac{15-a}{30-a-10}\right) \times 15$		
	(30 4 10)		
	$10 = \left(\frac{15-a}{20-a}\right) \times 15$		
	$\frac{\frac{10}{15}}{\frac{1}{5}} = \frac{\frac{15-a}{20-a}}{\frac{20-a}{20-a}}$		
	15 20-a 2 15-a		
	$\frac{1}{3} = \frac{20 \text{ G}}{20-a}$		
	2(20 - a) = 3(15 - a)	1	
	40 - 2a = 45 - 3a	. 1	
	3a - 2a = 45 - 40	A	
	a = 5		
	Sum of frequencies =	7	
	6+7+a+15+10+b=51		
	6+7+ <i>a</i> +15+10+ <i>b</i> =51		
	6+7+5+15+10+b=51 (putting the value of a)		
	6+7+5+15+10+b=51		
	43+ <i>b</i> =51	1	
	b=51-43	'	
	b=8		
	Answer:		
	The missing frequencies are a = 5 and b = 8		
	SECTION E	<u> </u>	
	Case study based questions		
36.	i) For the 6th year: a+5d=16,000		
	For the 9th year: $a+8d=22,600$	1800	
	$(a+8d)-(a+5d)=22\ 600-16\ 000$		
	This simplifies to	TUI	T
100	3 <i>d</i> =6,600	1 000	
	Therefore, $d=2,200$		
	Substitute the value of d back into the first equation:		
	a+5(2,200)=16,000	1+1+2	
	a+11,000=16,000		
	a=16,000-11,000		
	a=5,000		
	ii) a8 = a + 7d = 5000 + 7×2200		
	=> 5000 + 15400		
	=> 20400		
	therefore 8th year production = 20400 units		
	iii) $S3 = 3/2\{2x \ a + (3-1) \ x \ d\}$		
	=3/2(2x 5000 + 2 x 2200)		
	= 3/2(10000+4400)		

Pre Board Mock Test Series 2025 -X – Test 07(Prepared By Deepika Bhati) (Answerkey)

	= 3/2x 14400 = 21600	
	Or	
	iii) an= a+(n-1)d	
	29200=5000+(n-1)2200	
	24200/2200 =n-1	
	11=n-1	
	12=n	
	N=12 years	
37.	i) (4, 7)	1+1+2
	ii) (-6, 7)	
	iii) L (4,7) , N(12,3)	
	$x = {(4+12)/2} = 8$	
	$y={(7+3)/2}=5$ so mid points are (8,5)	A.
	OR	
	iii) distance between L(4,7) and O(5,2) is	4
	$\sqrt{(4-5)^2+(7-2)^2}=\sqrt{(1+25)}=\sqrt{26}$ units	
38.	(i) In $\triangle APB$, tan 30° = AB/AP \Rightarrow 1/ $\sqrt{3}$ = AB/24 \Rightarrow AB = 24/ $\sqrt{3}$ m =	2+1+1
	13.85 m = 14 m (approx)	
	OR OR	
	Considering, the diagram in the above question, AC as the new	
	height of the shop including the sign-board. In $\triangle APC$, tan 45° =	
	$AC/AP \Rightarrow 1 = AC/24 \Rightarrow AC = 24 \text{ m}$	
	(ii) From Q (i) and Q (ii). Length of sign board, $BC = AC - AB = 24$	
	- 14 = 10 m	
	(iii) In \triangle APC, cos 45° = AP/PC \Rightarrow 1/ $\sqrt{2}$ = 24/PC \Rightarrow PC = 24 $\sqrt{2}$	

AN EDUCATIONAL INSTITUTE