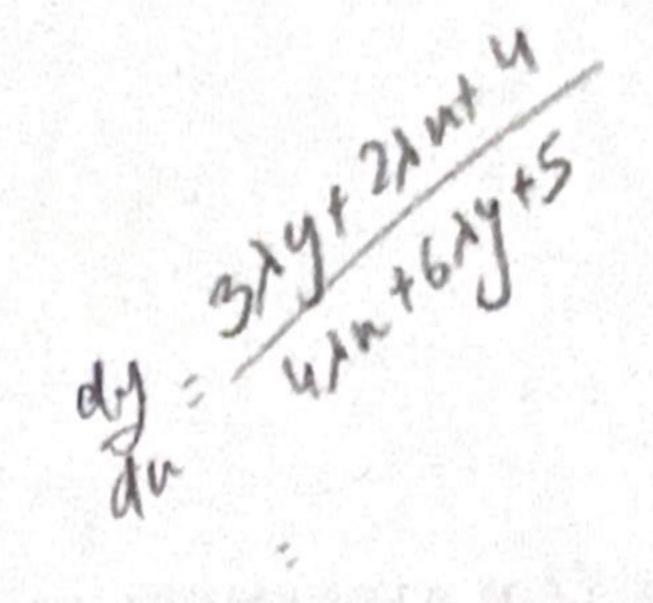
CENTRE FOR ADVANCEMENT OF STANDARDS IN EXAMINATIONS (GEMS ASIAN SCHOOLS) COMMON REHEARSAL EXAMINATIONS 2025- 2026

(ALL INDIA SENIOR SCHOOL CERTIFICATE EXAMINATION)

Subject: Mathematics Subject Code: 041 Time: 3 Hours Max. Marks: 80

General Instructions


Read the following instructions very carefully and strictly follow them:

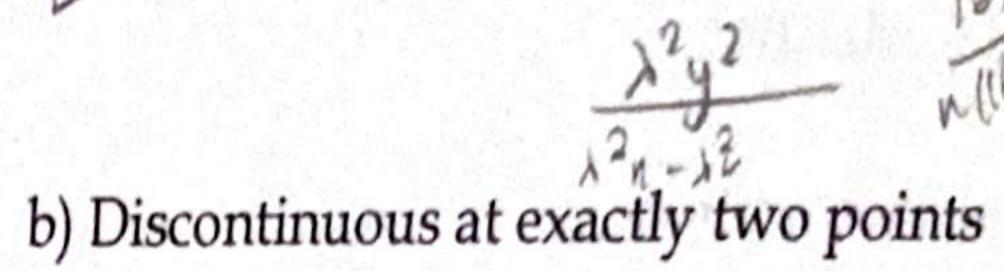
- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) This Question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A, Questions no. 1 to 18 are multiple-choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- (v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- (vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- (vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.
- (ix) Use of calculators is not allowed.

SECTION A

(This section comprises of multiple-choice questions (MCQs) of 1 mark each) Select the correct option (Question 1 - Question 18):

Q1.	Matrix A has m rows and n+5 columns; matri both AB and BA exist, then	x B has m rows and 11 - n colu	mns. If 1 mx(n15) m
Q2	a) AB and BA are symmetric matrices c) AB and BA are skew symmetric matrices If $\vec{p} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\vec{q} = -\hat{i} + 2\hat{j} + 2\hat{k}$, then w	b) AB and BA are square mated) None of these. hich of the following is correct	rices
	a) p is parallel to q b) p is perpendicula	r to q c) p > q d) p	=
Q3	$\int_{-3}^{3} \frac{ x-1 }{x-1} dx, x \neq 1 \text{ is equal to}$		1
	a) 0 b) -2 c)	4 d) 2	

Which of the following is a homogeneous differential equation? Q4

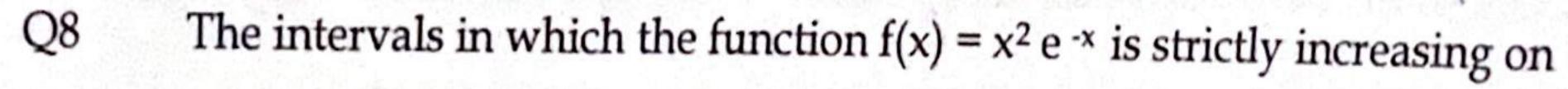

a)
$$(4x+6y+5) dy -(3y+2x+4) dx =0$$

b)(xy)
$$dx - (x^3 + y^3) dy = 0$$

c)
$$(x^3 + 2y^2)dx + 2xy dy = 0$$

d)
$$y^2 dx + (x^2 - xy - y^2) dy = 0$$

The function $f(x) = \frac{16-x^2}{16x-x^3}$ is Q5

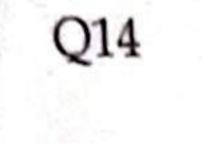


- a) Discontinuous at only one point
- c) Discontinuous at exactly three points d) None of these Q6 If A is a nonsingular matrix of order 3 such that $A^2 = 3A$, then the value of |A| is
 - a) -3 b) 3 c) 9

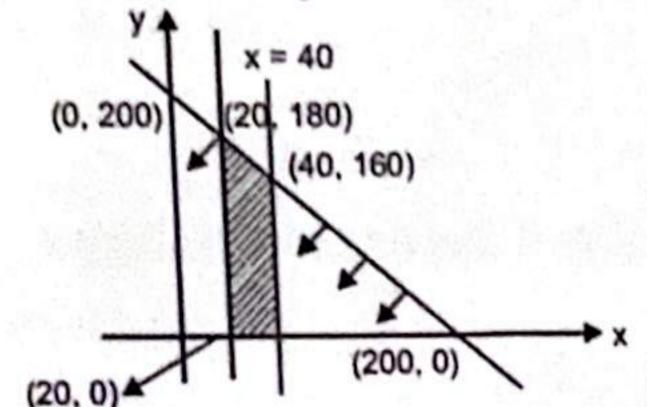
- d)27

If $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$, $P(A \cap B) = \frac{4}{13}$, then $P(A' \mid B)$ is

- a) $\frac{6}{13}$ b) $\frac{4}{13}$ c) $\frac{4}{6}$ d) $\frac{5}{6}$


- a) $(-\infty, \infty)$ b) $(-\infty, 0)$ c) $(2, \infty)$

d)4


- Number of symmetric matrices of order 3X3 with each entry 1 or -1 is Q9
 - a) 512
- b)64
- c)8
- Q10 $\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin x \cos x} dx \text{ is equal to}$

- a) π
- b) 0 c) $\int_0^{\frac{\pi}{2}} \frac{2\sin x}{1+\sin x \cos x} dx$ d) $\frac{\pi^2}{4}$
- Let θ be the angle between two-unit vectors \hat{a} and \hat{b} , such that $\sin \theta = \frac{3}{5}$. Then \hat{a} . \hat{b} Q11 a) $\pm \frac{3}{5}$ b) $\pm \frac{3}{4}$ c) $\pm \frac{4}{5}$ d) $\pm \frac{4}{5}$

- The number of arbitrary constants in the particular solution of a differential equation Q12 of order 3 is
- c) infinite
- d) 0
- a) 3 b) 4 If $A = \begin{bmatrix} 6 & 0 & x \\ 0 & 6 & 0 \end{bmatrix}$ is a scalar matrix, then y^x is equal to
- b) 1
- c)6
- $d)\pm6$

For an L.P.P. the objective function is Z = 400x + 300y, and the feasible region determined by a set of constraints (linear inequations) is shown in the graph.

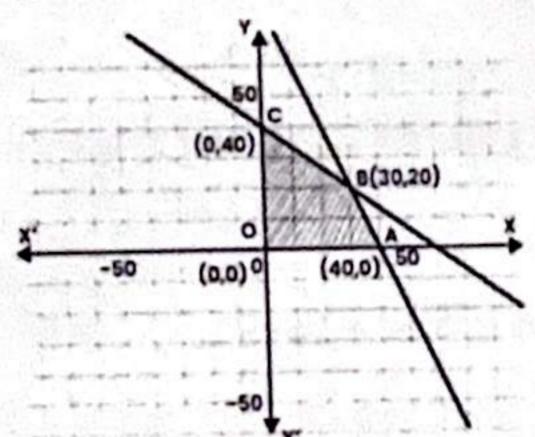
8000+ 34000 400(20)+ 300(180) 400(40)+ 300(160) 800(16000 48000

Coordinates at which the objective function is maximum is

Q15

a) (20,0) b) (40,0) c) (40,160) d) (20,180) The area of the region bounded by the curve $y^2 = x$, x = 4 and the x axis is

- a) $\frac{8}{3}$ sq. units b) 16 sq. units c) 32 sq. units d) $\frac{16}{3}$ sq. units


Q16

Let $A = \begin{bmatrix} 2 & 6 & 3 \\ 4 & 5 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 2 & 4 \\ 1 & 6 \end{bmatrix}$ Which of the following option is true regarding the 1 above matrices?

- a) Only AB is defined
- b) Only BA is defined
- c) Both AB and BA are defined
- d) Both AB and BA are not defined.

Q17

The corner points of the bounded feasible region of an LPP are O(0,0), A(40,0), B(30,20) and C(0,40). If the maximum value of the objective function Z= 2ax+by occurs at the point B(30,20) and C(0,40), then the relation between a and b is

211 600 x+ 2010 = 0+40
600 + 2010 = 40 3a+b=2b 3a+b=2b

60a+204b= 40b

- a) 2a =b b) a=2b c) 3a=b d) a=3b

Q18

The domain of $\cos x + \sin^{-1} x$ is:

- a) (-1, 1) b) R
- c) [-1, 1] d) Ø

ASSERTION-REASON BASED QUESTIONS

(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (a), (b), (c) and (d) as given below.)

- a) Both A and R are true and R is the correct explanation of A. b) Both A and R are true, but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

Q19 Assertion(A): Let $f: R \rightarrow R$ given by $f(x): \frac{|x|}{x} = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \text{ is a bijection.} \\ -1 & \text{if } x < 0 \end{cases}$ **Reason** (R): A function $g: A \rightarrow B$ is said to be a bijection if it is one one and onto. **Assertion** (A): If $f(x) = \sin^{-1}x + \cos^{-1}x + 2$ then f'(1) = 0Q20 Reason (R): $\frac{d}{dx}(\sin x) = \cos x$

SECTION B

This section comprises of very short answer-type questions (VSA) of 2 marks each.

Differentiate $3^{\sin^2 x}$ with respect to $\sin^2 x$. Q21

OR

If
$$x^y = e^{x+y}$$
 prove that $\frac{dy}{dx} = \frac{\log x - 2}{(\log x - 1)^2}$

- Q22 Evaluate $sin^{-1}[\cos{(sin^{-1}(\frac{\sqrt{3}}{2}))}]$
- Find the area of the parallelogram ABCD whose side AB and the diagonal AC are Q23 2 given by the vectors $3\hat{i} + \hat{j} + 4\hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively.
- Find the absolute maximum and absolute minimum value of the function Q24 2 $f(x) = \frac{1}{x+4}$ on the interval [0,1]
- If the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ on the vector $p\hat{i} + \hat{j} 2\hat{k}$ is $\frac{1}{3}$ then find the Q25 2 value of p.

OR Two children are flying kites from different rooftops, and their kite strings appear to intersect in the sky. The directions of the kite strings can be represented by the vectors $\vec{p} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\vec{q} = \hat{\imath} - 3\hat{\jmath} + 6\hat{k}$. Find the angle formed between the kite strings. Assume the strings are taut (no slack).

SECTION C

This section comprises of short answer type questions (SA) of 3 marks each. For the curve $y = 5x - 2x^3$ if x increases at the rate of 2 units/sec, then how fast is the 3 Q26 slope of the curve changing when x = 3.

227	Solve the linear programming problem graphically. Maximise and minimize $Z=5x+10y$, subject to the constraints:	3
	$x+2y \le 120$	
	$x + y \ge 60$	
	$x-2y \ge 0$	
Q28	$x, y \ge 0$ Evaluate: $\int \frac{dx}{1+3e^x+2e^{2x}}$	3
	OR	
	Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx$	
Q29	Verify that the lines given by $\hat{r} = (2+t) \hat{i} - (3t-1)\hat{j} + (4-t) \hat{k}$ and $\hat{r} = (1+2s)\hat{i} + (5-s)\hat{j} + (s+1)\hat{k}$ are skew lines. Hence, find the shortest distance between	3
	the lines. OR	
	During a treasure hunt, the positions of the starting point, the checkpoint, and the final treasure spot are collinear and given by $\vec{S} = 4\hat{\imath} + 3\hat{\jmath}$, $\vec{C} = 10\hat{\imath} + 9\hat{\jmath}$, $\vec{T} = 16\hat{\imath} + 15\hat{\jmath}$ respectively. Calculate the ratio in which the	
	checkpoint divides the line segment joining the starting point and the final treasure	
Q30	spot. Three critics review a book. For the three critics, the odds in favour of the book are 5:2, 4:3 and 3:4 respectively. Find the probability that the majority is in favour of the	3
	book. OR	
	Three events A,B and C have probabilities $\frac{2}{5}$, $\frac{1}{3}$ and $\frac{1}{2}$ respectively. Given that	
	$P(A \cap C) = \frac{1}{5}$ and $P(B \cap C) = \frac{1}{4}$, then find (i) $P(C \mid B)$ (ii) $P(A^{l} \cap C^{l})$ (iii) $P(A^{l} \mid C^{l})$	
Q31	- $\frac{1}{2}$ - $$	3
	SECTION D This section comprises of long-answer type questions (LA) of 5 marks each	
Q3:	2 If $\sqrt{4-x^2} + \sqrt{4-y^2} = a(x-y)$, Prove that $\frac{dy}{dx} = \frac{\sqrt{4-y^2}}{\sqrt{4-x^2}}$	5
Q3	Show that the differential equation $(x^3-3xy^2)dx = (y^3-3x^2y)dy$ is homogeneous and solve it.	5
	OR	
	Find the particular solution of the differential equation $(1-x^2)\frac{dy}{dx} - xy = x^2$, given that $y=2$ and $x=0$.	
	y ~ union ~ v.	

- Q34 A drone is flying in 3D space and is currently at point A(1,6,3). A laser beam is directed along the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. The drone reflects off the laser beam such that its path is symmetric with respect to the beam's line.
 - i)Find the coordinates of image A' of the drone after reflection.
 - ii)Write the equation of the straight line that represents the path connecting A and A'.

OR

Anuj and Arun are flying kites from their rooftops. Anuj's kite's string is represented by the straight line given by $\frac{x-4}{1} = \frac{y-2}{3} = \frac{z-1}{2}$. Arun's position is at $(2\hat{\imath} - 2\hat{\jmath} + \hat{k})$, and his kite's string is perpendicular to Anuj's string. Find the distance between Arun and the point of intersection of the two strings.

- Q35 A company is distributing its annual bonus among three departments: Sales, Marketing, and Development based on the following rules:
 - The bonus amount for the sales department must be equal to the combined bonus amounts for the marketing and development departments.
 - The Marketing department's bonus is Rs.15,000, more than half the bonus of the sales department.
 - The total bonus amount to be distributed among all three departments is Rs.200,000.

Find the bonus amount allocated to each department, using the matrix method.

SECTION E

(This section comprises 3 case-study/passage-based questions of 4 marks each with subparts. The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2, respectively. The third case study question has two subparts of 2 marks each) Case Study-1:

A landscaper wants to fence a rectangular garden using 400 m of fencing material. The design includes a divider fence running parallel to one of the sides, splitting the garden into two equal sections.

Q36

Let the length of the side perpendicular to the divider be x meters and the length of the side parallel to the divider be y meters. Based on this information, answer the following questions:

(i) Write the equation for the total fencing material used for the boundary and the divider in terms of x and y.

(iii) Write the area of the garden as a function of x. (iii) (a) Find the critical points of the area function. Use the second derivative test to determine the critical points at the maximum area. Also, find the maximum area.	
OR	
(iii) (b) Using the first derivative test, calculate the maximum area the landscaper can enclose with the 400 meters of fencing, considering the parallel divider.	
Case Study-2:	
et C be the set of 45 students of class 11 in a school.	
Let $\sigma: C \to N$ N is the set of natural numbers such that function $f(x) = Identity number$	
of student x. Based on the given information, answer the following questions.	
(i) Is f an injective function? Justify your answer.	
(ii) Is f a bijective function? Justify your answer.	
(iii) (a) Let R be a relation defined by the teacher to plan the seating	
arrangement of students in pairs, where	
$R = \{(x, y) : x \text{ and } y \text{ are the roll numbers of students such that } y = 2x\}$. List the elements of R.Is the relation is reflexive, symmetric, transitive? OR	2
(iii) (b) Consider the function $f: N \rightarrow N$ defined by $f(x) = 2x$.	
(iii) (b) Consider the function i: N→ N defined by I(x) = 2x. Is f a bijective function ?. Justify your answer.	
Case Study-3: A tech company produces three types of laptops: Standard, Gaming, and Ultrabook. Past data indicates that a customer buys a Standard laptop with a probability of 40%, a Gaming laptop with a probability of 30%, and an Ultrabook with a probability of 30%. The company's records also show that the probability of a laptop being returned due to a manufacturing defect is 2% for Standard laptops, 5% for Gaming laptops, and	
1% for Ultrabook's.	
Based on this information, answer the following questions:	
(i) What is the probability that a random laptop sold by the company will be returned	

(ii) A customer returns a laptop due to a manufacturing defect. What is the probability 2

due to a manufacturing defect?

that the laptop was a Gaming laptop?