

ANSWER KEY

1	b
2	c
3	a
4	d
5	c
6	c
7	c
8	b
9	c
10	d
11	<p>(A) The possible values for x are 2 and 3 Or</p> <p>(B) In $\triangle RPQ$ and $\triangle RST$,</p> $\angle RPQ = \angle RTS \quad \dots \text{(Given)}$ $\angle R = \angle R \quad \dots \text{(Common angle)}$ $\triangle RPQ \sim \triangle RTS \quad \dots \text{(By AA similarity criterion)}$
12	<p>Length of side AB: Points are A(0, 4) and B(0, 0). $AB = \sqrt{(0-0)^2 + (0-4)^2} = \sqrt{0^2 + (-4)^2} = \sqrt{0+16} = \sqrt{16} = 4 \text{ units}$</p> <p>Length of side BC: Points are B(0, 0) and C(3, 0). $BC = \sqrt{(3-0)^2 + (0-0)^2} = \sqrt{3^2 + 0^2} = \sqrt{9+0} = \sqrt{9} = 3 \text{ units.}$</p> <p>Length of side AC: Points are A(0, 4) and C(3, 0). $AC = \sqrt{(3-0)^2 + (0-4)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9+16} = \sqrt{25} = 5 \text{ units}$</p> $P = AB + BC + AC = 4 + 3 + 5 = 12 \text{ units.}$
13	

STITUTE

13

Given: $\angle PQR = \angle STQ$ 2) $QT : TR = 2 : 5$ 3) $PR = 70 \text{ cm}$

Soln

 $TR = 2T$ given $\angle Q = \angle R$ common $\triangle SQT \sim \triangle PQR$

by AA similarity

$$\Rightarrow \frac{SQ}{PQ} = \frac{QT}{QR} = \frac{ST}{PR}$$

$$\frac{2}{5} = \frac{ST}{20}$$

$$ST = 8$$

 DR Given $PQ \parallel AB$ $AB \parallel CB$ To prove $AR^2 = PR \times CR$ Proof In $\triangle PQR$ $PQ \parallel AB$
By BPT

$$\frac{RA}{AP} = \frac{RB}{BC} \quad \textcircled{1}$$

In $\triangle ACR$, $AB \parallel CB$

$$\text{By BPT} \quad \frac{RC}{CA} = \frac{RB}{BC} \quad \textcircled{2}$$

$$\text{From } \textcircled{1} \text{ and } \textcircled{2} \quad \frac{AR}{AP} = \frac{RC}{AC}$$

$$\frac{AP}{AR} = \frac{AC}{RC}$$

Add 1

$$1 + \frac{AP}{AR} = 1 + \frac{AC}{RC}$$

$$\frac{AR + AP}{AR} = \frac{RC + AC}{RC}$$

$$\frac{PR}{AR} = \frac{AR}{RC}$$

$$PR \times RC = AR^2 \quad (\text{HP})$$

INSTITUTE

14

Line segment is divided by m:n if
 \therefore co-ordinate of P (m:n)

(m:n) P $(-1)7$

$A(-4, -6)$ K t

A is 2nd. from left.

 $O = k(-6) + t \times 7$
 $k+1$
 $O = -6 + 7t$
 $\frac{O}{7} = t$
 \therefore ratio = $\frac{6}{7}$.

Now, on: $\frac{1 \times (-6) + 7 \times (-1)}{k+1}$

 $m = \frac{-6 + 7 \times (-1)}{7+1}$
 $m = \frac{-6 - 7}{8} \Rightarrow m = \frac{-13}{8}$
 $\Rightarrow m = \frac{-13}{8}$
 \therefore required = $(-3.4, 0)$.

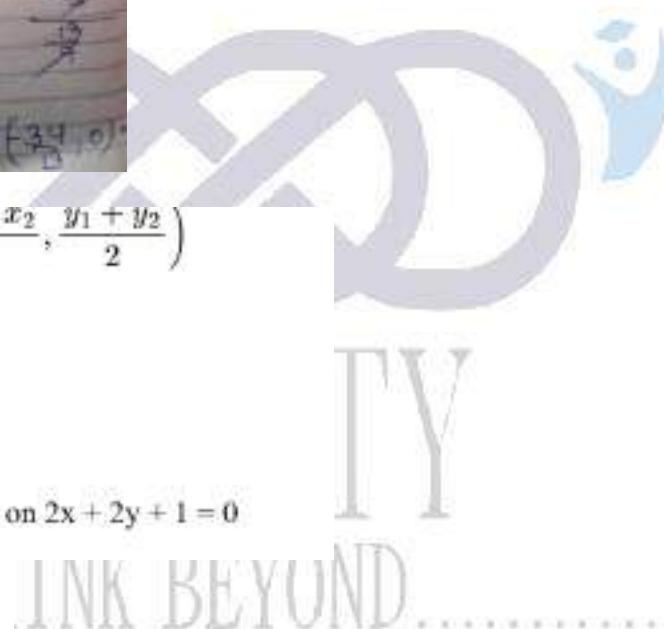
Or

$$\text{Mid-point of a line} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

$$(x, y) = \left(\frac{3+p}{2}, \frac{4+7}{2} \right)$$

$$= \left(\frac{3+p}{2}, \frac{11}{2} \right)$$

The point $\left(\frac{3+p}{2}, \frac{11}{2} \right)$ lies on $2x + 2y + 1 = 0$

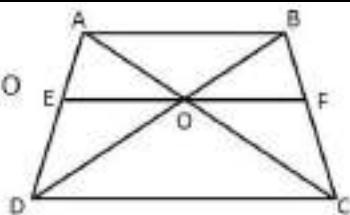

$$2\left(\frac{3+p}{2}\right) + 2\frac{11}{2} + 1 = 0$$

$$3+p + 11 + 1 = 0$$

$$\Rightarrow p + 15 = 0$$

$$\Rightarrow p = -15$$

The value of p is -15.

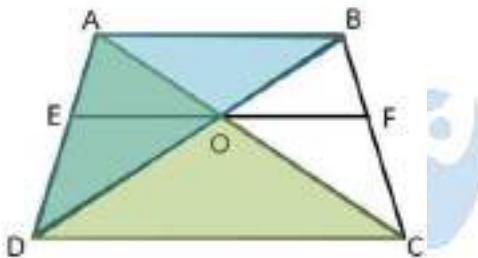


15

Given: ABCD is a quadrilateral

where diagonals AC & BD intersect at O

$$\& \frac{AO}{BO} = \frac{CO}{DO}$$


To prove: ABCD is a trapeziumConstruction: Let us draw a line EF II AB passing through point O.Proof: Given $\frac{AO}{BO} = \frac{CO}{DO}$

$$\Rightarrow \frac{AO}{CO} = \frac{BO}{DO} \quad \dots(1)$$

Now,

in $\triangle ADB$

$$EO \parallel AB \quad (\text{Because } EF \parallel AB)$$

(Line drawn parallel to one side of triangle, intersects the other two sides in distinct points, Then it divides the other 2 side in same ratio)

$$\frac{AE}{DE} = \frac{BO}{DO}$$

$$\Rightarrow \frac{AE}{DE} = \frac{AO}{CO} \quad (\text{From (1)})$$

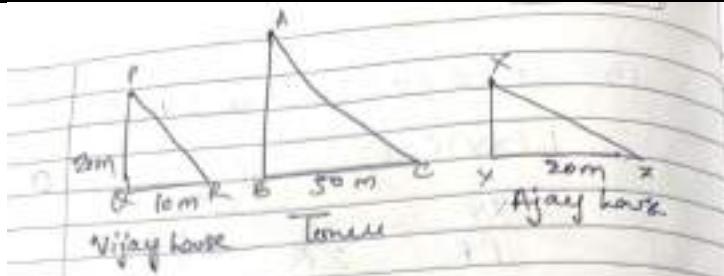
Thus in $\triangle ADC$,

Line EO divides the triangle in the same ratio

Now, $EO \parallel DC$ But, we know that $EO \parallel AB$

$$\Rightarrow EO \parallel AB \parallel DC$$

$$\Rightarrow AB \parallel DC$$


Hence,

one pair of opposite sides of quadrilateral ABCD are parallel

Therefore ABCD is a trapezium .

Hence proved

16

(i) In $\triangle PQR \sim \triangle ABC$
 $\angle Q = \angle B = 90^\circ$ (vertical height of house & tower)

 $\angle R = \angle C$ (Sun's altitude)

By AA Similarity

 $\triangle PQR \sim \triangle ABC$

$$\frac{PQ}{AB} = \frac{QR}{BC}$$

$$\frac{20}{AB} = \frac{10}{50}$$

$$100m = AB$$

height of tower is 100m

(ii) $\triangle PQR \sim \triangle XYZ$ (By AA criterion)

$$\frac{PQ}{XY} = \frac{QR}{YZ} \Rightarrow$$

$$\frac{20}{XY} = \frac{10}{20}$$

$$\frac{200}{10} = XY$$

$$10m = XY$$

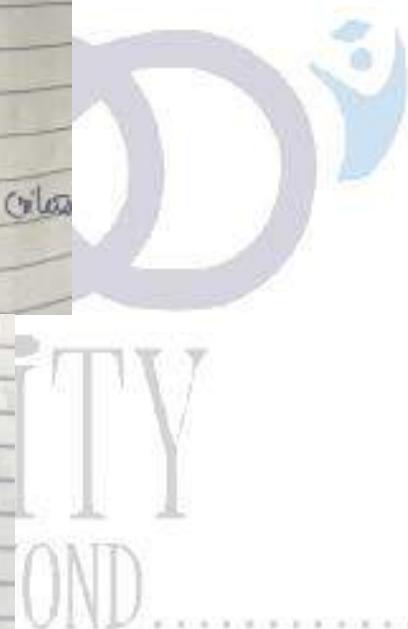
height of Ajay's house = 60m

(iii) when $QR = 12m$ find BC $\triangle PQR \sim \triangle ABC$

$$\frac{PQ}{AB} = \frac{QR}{BC} = \frac{PR}{AC}$$

$$\frac{20}{100} = \frac{12}{BC}$$

$$\frac{20}{100} = \frac{12}{BC}$$


$$BC = 12 \times 5$$

$$= 60m$$

(b) As $\triangle ABC \sim \triangle XYZ$

$$\frac{AB}{XY} = \frac{BC}{YZ}$$

$$\frac{100}{10} = \frac{40}{YZ} \Rightarrow YZ = 4m$$

17

(i) Bank (A): (9, 5)
 Hospital (B): (-3, -1)
 Supermarket (C): (5, -5)
 Distance between Bank and Hospital = $6\sqrt{5}$

(ii) Supermarket (C): (5, -5)
 Bank (A): (9, 5)
 Using mid point formula E = (7, 0)

(iii) (a) Distance from Bank(A) to Bus Stand (D)
 Distance from A (9, 5) to D (1, -3): $8\sqrt{2}$

Or

(iii)(b) Find 'a' and 'b' for $BP = PQ = QA$
 $a = 1, b = 5$.

18

$$A = (0, 5), \quad B = (4, -3), \quad C = (4, 9)$$

Or

O(0, 0) and A(3, $\sqrt{3}$) be the given points and let B(x, y) be the third vertex of equilateral ΔOAB . Then, $OA = OB = AB$

$$\Rightarrow OA^2 = OB^2 = AB^2$$

We have,

$$OA^2 = (3-0)^2 + \left(\sqrt{3}-0\right)^2 = 12,$$

$$OB^2 = x^2 + y^2 \text{ and } AB^2 = (x-3)^2 + \left(y-\sqrt{3}\right)^2$$

$$\Rightarrow AB^2 = x^2 + y^2 - 6x - 2y + 12$$

$$\therefore OA^2 = OB^2 = AB^2$$

$$\Rightarrow OA^2 = OB^2 \text{ and } OB^2 = AB^2$$

$$\Rightarrow x^2 + y^2 = 12$$

$$\text{and } x^2 + y^2 = x^2 + y^2 - 6x - 2\sqrt{3}y + 12$$

$$\Rightarrow x^2 + y^2 = 12 \text{ and } 6x + 2\sqrt{3}y = 12$$

$$\Rightarrow x^2 + y^2 = 12 \text{ and } 6x + 2\sqrt{3}y = 12$$

$$\Rightarrow x^2 + y^2 = 12 \text{ and } 3x + \sqrt{3}y = 6$$

$$\Rightarrow x^2 + \left(\frac{6-3x}{\sqrt{3}}\right)^2 = 12 \left[\because 3x + \sqrt{3}y = 6 \therefore y = \frac{6-3x}{\sqrt{3}} \right]$$

$$\Rightarrow 3x^2 + (6-3x)^2 = 36$$

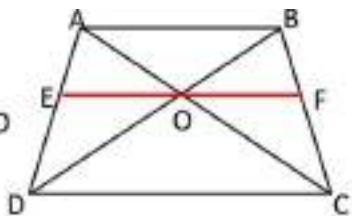
$$\Rightarrow 12x^2 - 36x = 0 \Rightarrow x = 0, 3$$

$$\therefore x = 0 \Rightarrow \sqrt{3}y = 6$$

$$\Rightarrow y = \frac{6}{\sqrt{3}} = 2\sqrt{3}$$

$$\text{and, } x = 3 \Rightarrow 9 + \sqrt{3}y = 6$$

$$\Rightarrow y = \frac{6-9}{\sqrt{3}} = -\sqrt{3}$$


Hence, the coordinates of the third vertex B are $(0, 2\sqrt{3})$ or $(3, -\sqrt{3})$.

19 Prove BPT

Given: ABCD is a trapezium

where diagonals AC & BD intersect at O

EF is a line passing through O,
parallel to CD

To prove: We need to prove $\frac{AE}{ED} = \frac{BF}{FC}$

Since $EO \parallel CD$

Using Basic Proportionality theorem

$$\frac{AE}{ED} = \frac{BO}{DO} \quad \dots(1)$$

Comparing (1) and (2)

$$\frac{AE}{ED} = \frac{BF}{FC}$$

Hence proved

Since $OF \parallel CD$

Using Basic Proportionality theorem

$$\frac{BO}{DO} = \frac{BF}{FC} \quad \dots(2)$$

INFINITY
THINK BEYOND.

AN EDUCATIONAL INSTITUTE