

UNIT WISE PRACTICE QUESTIONS PAPER
(UNITS: RELATION-FUNCTION, MATRICES, DETERMINANTS)

Marking Scheme

Q.No.	Ans.	Hints/Solution
1.	(D)	$f(x) = 2 + x^2$ For one-one; let $f(x) = f(y) \Rightarrow 2 + x^2 = 2 + y^2 \Rightarrow x = \pm y$ So not one-one. For onto; there are so many elements in co-domain like -3, -4 etc. which are not mapped with any element of domain so not onto.
2.	(C)	$\Delta = \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix} = \frac{61}{2} \text{ sq units}$
3.	(A)	For all the 4 elements of the matrix there are three choices so 3^4 .
4.	(B)	Reflexive: $(1,1) \notin R$ so not reflexive. Symmetric: $(1,2) \in R$ but $(2,1) \notin R$ so not symmetric. Transitive: It is not violating the rule of being transitive so transitive.
5.	(A)	$\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix} = x^2 - (x^2 - 1) = 1$
6.	(A)	Since A is a skew matrix so $A' = -A \Rightarrow A' = -A \Rightarrow A' = (-1)^n A $ $ A = (-1)^n A \Rightarrow$ Since n is odd so $ A = - A \Rightarrow 2 A = 0 \Rightarrow A = 0$
7.	(C)	Only $(a, b) \in R$ If $a = b - 2$ and $b > 6$ so $(6,8) \in R$.
8.	(B)	If all the diagonal elements of a diagonal matrix are equal then it is called scalar matrix.
9.	(D)	Since the given matrix is not a square matrix so $\det(A)$ doesn't exist.
10.	(C)	Let $f^{-1}(x) = y \Rightarrow x = f(y) \Rightarrow x = y^3 + 3 \Rightarrow x - 3 = y^3 \Rightarrow y = (x - 3)^{1/3}$
11.	(A)	$(A - I)^3 + (A + I)^3 - 7A$ $A^3 - I^3 - 3A^2I + 3AI^2 + A^3 + I^3 + 3A^2I + 3AI^2 - 7A$ $2A^3 + 6AI^2 - 7A$ $2A + 6A - 7A$ A
12.	(B)	$f(x) = 8x^3 \text{ and } g(x) = x^{1/3}$ $fog(x) = f(g(x)) = 8x$
13.	(D)	Two matrices are inverse of each other iff $AB = BA = I$.
14.	(B)	$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ $x^2 - 36 = 36 - 36$ $x = \pm 6$
15.	(B)	$A = \{a, b, c, d\}$ $f = \{(a, b)(b, d)(c, a)(d, c)\}$ $f^{-1} = \{(b, a)(d, b)(a, c)(c, d)\}$

16.	(D)	<p>Reflexive: Since each line parallel to itself i.e. $(L, L) \in R$ so reflexive.</p> <p>Symmetric: Let $(L_1, L_2) \in R \Rightarrow L_1$ is parallel to $L_2 \Rightarrow L_2$ is parallel to $L_1 \Rightarrow (L_2, L_1) \in R$</p> <p>So symmetric.</p> <p>Transitive: Let $(L_1, L_2) \& (L_2, L_3) \in R \Rightarrow L_1 \parallel L_2 \& L_2 \parallel L_3 \Rightarrow L_1 \parallel L_3 \Rightarrow (L_1, L_3) \in R$</p> <p>So transitive</p> <p>So R is an equivalence relation.</p>
17.	(B)	Minor of an element of a determinant of order n ($n \geq 2$) is a determinant of order $n - 1$.
18.	(B)	$AB = 3I$ $A^{-1}AB = 3A^{-1}I$ $B = 3A^{-1}$ $A^{-1} = \frac{B}{3}$
19.	(C)	(A) is incorrect and (R) is correct.
20.	(D)	(A) is false, but (R) is true.

SECTION – B

21.	$A = \{1, 2, 3, 4, 5, 6\}$ $R = \{(x, y) : y \text{ is divisible by } x\}$ <p><u>Symmetric</u>: $(1, 2) \in R$ but $(2, 1) \notin R$ because 1 is not divisible by 2. So not symmetric.</p> <p><u>Transitive</u>: let $(x, y) \in R \Rightarrow y$ is divisible by $x \Rightarrow y = \lambda x$ let $(y, z) \in R \Rightarrow z$ is divisible by $y \Rightarrow z = \mu y \Rightarrow z = \mu \cdot \lambda \cdot x \Rightarrow z$ is divisible by x $\Rightarrow (x, z) \in R \Rightarrow$ So transitive.</p>	1 1
22.	<p>Given A and B are Symmetric matrices so $A' = A$ and $B' = B$</p> <p>Now $(AB - BA)' \Rightarrow (AB)' - (BA)'$ $\Rightarrow B'A' - A'B'$ $\Rightarrow BA - AB$ $\Rightarrow -(AB - BA)$</p> <p>So $AB - BA$ is a skew symmetric matrix.</p>	½ ½ ½ ½
23.	$A = \begin{vmatrix} 6 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{vmatrix}$ $ A = 6(4) - 0 + 0 = 24$ $ 2A = \begin{vmatrix} 12 & 0 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 8 \end{vmatrix}$ $ 2A = 12(16) - 0 + 0 = 192 = 8 \times 24 = 8 A $	½ ½ ½
24.	<p>Given that $f(x) = \frac{1}{x} \forall x \in \mathbb{R}$</p> <p>But $0 \in \mathbb{R}$ for which $f(0)$ is not defined</p> <p>Hence $f(x)$ is not a function.</p>	2

25.	$2 \begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$ $\begin{bmatrix} 2+y & 6 \\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$ $2+y=5 \text{ & } 2x+2=8$ $y=3 \text{ & } x=3$ $x-y=0$	$\begin{matrix} 1 \\ 1/2 \\ 1/2 \end{matrix}$
-----	--	---

SECTION – C

26.	<p>Clearly $a \leq a \forall a \in \mathbb{R} \Rightarrow (a, a) \in \mathbb{R} \Rightarrow$ So reflexive.</p> <p>Let $(a, b) \& (b, c) \in \mathbb{R} \Rightarrow a \leq b \& b \leq c \Rightarrow a \leq c \Rightarrow (a, c) \in \mathbb{R} \Rightarrow$ So transitive</p> <p>But not symmetric because $(1, 2) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$</p>	$\begin{matrix} 1 \\ 1 \\ 1 \end{matrix}$
27.	$A(x, 4) B(-2, 4) \text{ and } C(2, -6)$ $\Delta = \frac{1}{2} \begin{vmatrix} x & 4 & 1 \\ -2 & 4 & 1 \\ 2 & -6 & 1 \end{vmatrix} = 5x + 10$ $5x + 10 = \pm 35$ $x = 5 \text{ or } -9$	$\begin{matrix} 2 \\ 1 \end{matrix}$
28.	$AB = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}$ $(AB)^{-1} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}^{-1} = \frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix}$ <p>Further $A = -11$ and $B = 1$</p> $A^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} \text{ and } B^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ $B^{-1}A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$ $(AB)^{-1} = B^{-1}A^{-1}$	$\begin{matrix} 1 \\ 1 \\ 1 \end{matrix}$
29.	$f: \mathbb{R} \rightarrow \mathbb{R}$ $f(x) = [x]$ $\exists 1, 1.6 \in \mathbb{R} (\text{domain})$ <p>For which $f(1) = (1.6) = 1$</p> <p>So not one-one</p> <p>There are so many elements in co-domain (like 2.5, 7.3 etc.) which are not image of any element of domain so it is not onto</p>	$1\frac{1}{2}$
30.	$\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$ <p>Co-factors of elements of 3rd column are:</p> $A_{13} = z - y ; \quad A_{23} = -(z - x) ; \quad A_{33} = -(x - y)$ $\Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$ $\Delta = yz(z - y) - zx(z - x) - xy(x - y)$ $\Delta = (x - y)(y - z)(z - x)$	$\begin{matrix} 1 \\ 2 \\ 1 \end{matrix}$
31.	$a_{ij} = e^{ix} \sin jx$	3

$$A = \begin{bmatrix} e^x \sin x & e^x \sin 2x \\ e^{2x} \sin x & e^{2x} \sin 2x \\ e^{3x} \sin x & e^{3x} \sin 2x \end{bmatrix}$$

SECTION – D

32.	<p>Let $A \in P(X)$ then $A \subset A \Rightarrow (A, A) \in R \Rightarrow$ So R is reflexive.</p> <p>Let $(P, X) \in P(X)$ such that $P \subset X$ Hence $(P, X) \in R$ but $X \not\subset P \Rightarrow (P, X) \notin R$</p> <p>So R is not Symmetric.</p> <p>Let $A, B, C \in P(X)$ such that $(A, B)(B, C) \in R \Rightarrow A \subset B, B \subset C \Rightarrow A \subset C \Rightarrow (A, C) \in R$</p> <p>Hence R is transitive.</p>	1 2 2
33.	$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ $A^2 = A \times A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix}$ $A^3 = \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 & 37 & 26 \\ 10 & 5 & 1 \\ 35 & 42 & 34 \end{bmatrix}$ <p>Now $A^3 - 4A^2 - 3A + 11I$</p> $\begin{bmatrix} 28 & 37 & 26 \\ 10 & 5 & 1 \\ 35 & 42 & 34 \end{bmatrix} - 4 \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix} - 3 \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	2 2 1
34.	$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ $ A = 1$ $Adj A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ <p>The given system can be written as</p> $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$ $A'X = B$ $X = (A')^{-1}B = (A^{-1})'B$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix}$ $x = 0, y = -5 \text{ & } z = -3$	$\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$ 1 $1\frac{1}{2}$

35.	$f(x) = \frac{4x+3}{6x-4}$ $\text{Let } f(x) = f(y) \Rightarrow \frac{4x+3}{6x-4} = \frac{4y+3}{6y-4} \Rightarrow (4x+3)(6y-4) = (4y+3)(6x-4)$ $24xy + 18y - 16x - 12 = 24xy + 18x - 16y - 12$ $34x = 34y$ $x = y$ <p>So f is One-one function.</p>	2 2 1
-----	--	-------------

SECTION – E

36.	<p>(i) Required Area = $\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 3 & \sqrt{3} & 1 \\ 3 & -\sqrt{3} & 1 \end{vmatrix} = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$ sq. units</p> <p>(ii) Since, a face of the Pyramid consists of 25 smaller equilateral triangles. \therefore Area of a face of the Pyramid = $25 \times 3\sqrt{3} = 75\sqrt{3}$ sq. units</p> <p>(iii) Area of equilateral triangle = $\frac{\sqrt{3}}{4} (\text{side})^2$ $3\sqrt{3} = \frac{\sqrt{3}}{4} (\text{side})^2 \Rightarrow \text{side} = 2\sqrt{3}$ units</p> <p>Let h be the length of the altitude of a smaller equilateral triangle</p> $\frac{1}{2} \times \text{base} \times h = 3\sqrt{3}$ $\frac{1}{2} \times 2\sqrt{3} \times h = 3\sqrt{3}$ $h = 3$ units	1 1 1 1
37.	<p>(A) Rs A, Rs B and Rs C are the cost incurred by the organization for villages X, Y, Z respectively, therefore matrix equation will be</p> $\begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50 \\ 20 \\ 40 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix}$ <p>(B) Let number of toilets expected in villages X, Y, Z be x, y, z respectively Therefore required matrix is</p> $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 20 \end{bmatrix}$ <p>(C) $\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50 \\ 20 \\ 40 \end{bmatrix} = \begin{bmatrix} 30000 \\ 23000 \\ 39000 \end{bmatrix}$</p> <p>Total money spent = $30000 + 23000 + 39000 = 92000$ Rs</p>	1 1 2
38.	<p>(i) We know that, two ordered pairs are equal, if their corresponding elements are equal. $(a - 3, b + 7) = (3, 7)$ $\Rightarrow a - 3 = 3$ and $b + 7 = 7$ [equating corresponding elements] $\Rightarrow a = 3 + 3$ and $b = 7 - 7 \Rightarrow a = 6$ and $b = 0$</p> <p>(ii) $(x + 6, y - 2) = (0, 6)$</p>	1

	$\Rightarrow x + 6 = 0$ $\Rightarrow x = -6 \text{ and } y - 2 = 6$ $\Rightarrow y = 6 + 2 = 8$ $(iii) (x + 2, 4) = (5, 2x + y)$ $\Rightarrow x + 2 = 5$ $\Rightarrow x = 5 - 2 = 3 \text{ and } 4 = 2x + y$ $\Rightarrow 4 = 2 \times 3 + y$ $\Rightarrow y = 4 - 6 = -2$ $(iv) x + 3 = 6,$ $2x + y = 5$ $\Rightarrow x = 3, y = 1$	1
--	--	---